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Abstract— The design of safe-critical control algorithms for
systems under Denial-of-Service (DoS) attacks on the system
output is studied in this work. We aim to address scenarios
where attack-mitigation approaches are not feasible, and the
system needs to maintain safety under adversarial attacks. We
propose an attack-recovery strategy by designing a switching
observer and characterizing bounds in the error of a state esti-
mation scheme by specifying tolerable limits on the time length
of attacks. Then, we propose a switching control algorithm
that renders forward invariant a set for the observer. Thus, by
satisfying the error bounds of the state estimation, we guarantee
that the safe set is rendered conditionally invariant with respect
to a set of initial conditions. A numerical example illustrates
the efficacy of the approach.

I. INTRODUCTION

The security of Cyber-Physical Systems from a control-
theoretic perspective is a growing area of research [1]. Var-
ious types of attacks on a control system can occur, such as
sensor data or system actuators getting compromised [2], [3].
Attackers can disable the transmission of signals between
devices, causing a Denial of Service (DoS) attack [4]. Such
attacks can lead to violation of safety requirements, such as
avoiding obstacles or keeping the system trajectories in a
desired region of the state space [5].

Mitigating and responding to attacks is an active area of
research. Some efforts have focused on developing robust
observers to prevent compromised data from affecting the
feedback loops. Secure estimation uses redundant observers
to reconstruct the state, but they assume that only a certain
number of sensors (in particular, less than half of the sensors)
have been compromised [6]. An alternative to reduce this
level of redundancy is to reject outliers with the use of robust
statistics [7]. This approach requires precise knowledge of
the system’s dynamical model. The control signal can
also be constrained to prevent attackers from causing dam-
ages [8]. However, such approaches may negatively affect
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the system’s performance. There is a plethora of work on
resilient or robust control design, see, e.g., [6], [9], [10],
that focuses on system performance under attacks, however,
without any consideration or guarantees on safety.

Safety is perhaps the most important system property we
need to maintain while undergoing an attack. Control barrier
function (CBF)-based approaches can help design control
algorithms for forward invariance of a safe set [11]. The
authors in [12] introduce the notion of fault-tolerant CBF for
handling attacks on stochastic systems. In [13], the authors
study safe control design under DoS attacks.

In this paper, we focus on the problem of safely recovering
from output attacks, i.e., keeping the system trajectories in
a safe set even under DoS attacks. The proposed formula-
tion is applicable to several use cases with objectives in-
cluding obstacle avoidance and collision-free navigation for
autonomous vehicles, reach-avoid control problems, surveil-
lance, and convoy of multi-agent systems, among others. We
propose a control scheme based on the information available,
namely, the uncompromised outputs, that assures safety for
systems with outputs experiencing DoS attacks. We consider
scenarios in which every attack has finite duration, succeeded
by an interval of time without attacks. We are interested in
finding the set of initial conditions and the control action
such that the state trajectory remains in the safe set at
all times. During attacks, the controller relies only on the
uncompromised outputs, from which we generate an estimate
of the state, whereas the entire output is used when attacks
are not present.

In this paper, we design a switching observer scheme that
uses the complete output information when there is no attack
and uncompromised output information during an attack in
the sensors. We provide sufficient conditions involving key
properties of the system, such as the maximum tolerable
length of the DoS attack and the minimum required length
of the interval without an attack for recovery, guaranteeing
that the state estimation error remains uniformly bounded.
Furthermore, we design CBF-based observer-based feedback
laws to render a properly defined set forward invariant for the
observer so that with bounded estimation error, the system
is safe. This is obtained provided conditional invariance of
a set of interest with respect to a set of initial states. Due to
space constraints, proofs and other details are not included
and will be published elsewhere.

Notation. The symbols R, R≥0, and N>0 denote the
sets of real numbers, nonnegative reals, and positive natural
numbers, respectively. Let |x| be the Euclidean norm of the
vector x. Let A denote the closure of the set A. Let |A| be
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the induced matrix 2−norm of A, rank(A) denote its rank,
and λm(A), λM (A) denote the eigenvalues with minimum
and maximum real part, respectively. Let B ⊂ Rn denote
the closed unit ball centered at the origin and p+rB the ball
of radius r ≥ 0 centered at p ∈ Rn. We denote by Õ(C,A)
the observability matrix of the pair (C,A) and by C̃(A,B)
the controllability matrix of the pair (A,B).

II. PRELIMINARIES

Consider the nonlinear system

F : ż = F (t, z), y = H(t, z) (1)

where z ∈ Rn is the system state, y ∈ Rp is the system
output, F : R≥0 × Rn → Rn is the (potentially nonsmooth)
flow map and H : R≥0 × Rn → Rp is the output map.

A solution to the system F is defined as follows.

Definition 1 (Solution to F). A locally absolutely continuous
function t 7→ z(t) defines a solution to the system F in (1)
if d

dtz(t) = F (t, z(t)) for almost all t ∈ R≥0.

We say that a solution z to F is maximal if it cannot be
extended and we say it is complete when dom z = [0,∞).

Definition 2 (Safety). The system (1) is said to be safe with
respect to (X0, Xu), with X0 ⊂ Rn \Xu, if for each z0 ∈
X0, each solution t 7→ z(t) to (1) with z(0) = z0 satisfies
z(t) ∈ Rn \Xu for all t ∈ dom z.

Definition 3 (Conditional invariance). A closed set S ⊂ Rn

is said to be conditionally invariant for system (1) with
respect to M ⊂ S if, for each z0 ∈ M , any solution t 7→ z(t)
to (1) from z0 satisfies z(t) ∈ S for all t ∈ dom z.

It is immediate that the system (1) is safe with respect to
(X0, Xu) if and only if the set S := Rn\Xu is conditionally
invariant for (1) with respect to X0. For more details see [14].

III. PROBLEM FORMULATION

A. System Model

Consider the linear time-invariant control system

S : ẋ = Ax+Bu, y = Cx (2)

where x ∈ Rn is the system state, y ∈ Rp is the system
output, u ∈ U is the control input, and U ⊂ Rm. Here,
A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.

B. Attack Model

In this work, we consider attacks on the system output y.
In particular, we consider an attack where a subset of the
components of the system output is compromised. Under
such an attack model, the measured system output ȳ takes
the form

ȳ = (ys, ya) (3)

where ys = C̃x, and, for each solution t 7→ x(t) to (2),

ya(t) =

{
C̄x(t) if t /∈ Ta,
Y (t, x(t)) if t ∈ Ta

(4)

The quantity C̃x denotes the secured output components
that cannot be attacked with C̃ ∈ Rp̃×n and 0 ≤ p̃ < p,
C̄x denotes the vulnerable output components that can be

attacked with C̄ ∈ R(p−p̃)×n such that C =

[
C̃
C̄

]
, and

Y : R≥0 × Rn → Rp−p̃ denotes the attacked output signal.
We denote with Ta ⊂ R≥0 the set of times when an attack
is present on the system output, which is assumed to be
known provided a DoS attack detection mechanism. The
attack model (3) captures Denial-of-Service (DoS) attacks
on the system output. Let [ti1, t

i
2) with ti2 > ti1 ≥ 0 denote

the interval of time over which the i−th DoS attack occurs,
with i ∈ N>0. Define Ta :=

⋃
i

[ti1, t
i
2), T1 =

⋃
i

{ti1}, and T2 =⋃
i

{ti2} as the intervals of attack, and the sets of the starting

and ending time instants of attacks, respectively. To provide
sufficient conditions to guarantee safety, we characterize
the attacks by defining Ta := maxi∈{1,2,... }(t

i
2 − ti1) and

Tna := mini∈{2,3,... }(t
i
1 − ti−1

2 ) as the maximum length
of the DoS attack and the minimum length of the interval
without an attack, respectively. Notice that t02 := 0, and when
t11 > 0, we have t11 ≥ Tna.

C. Problem Statement

Given a nonempty, closed set S ⊂ Rn, referred to as the
safe set, the problem to solve is the design of an algorithm
such that the set S is conditionally invariant for (2) with
respect to the set X0. Formally, the control design problem
studied in this paper is stated as follows.

Problem (⋆). Given system (2), a closed set S ⊂ Rn, and
the attack model in (3),

1) Find a set of initial states X0 ⊂ S, and
2) Design a control law κ assigning the input u of (2)

using measurements of ȳ
such that, for each x0 ∈ X0, the solution to the resulting
closed-loop system, namely t 7→ x(t), with x(0) = x0,
satisfies x(t) ∈ S for all t ≥ 0.

D. Proposed Solution

To solve Problem (⋆), we propose the design of an
observer-based feedback law that induces conditional invari-
ance of S with respect to X0. Most CBF-based methods for
forward invariance rely on measurement of the entire state
[15]. We propose to employ a state estimator that reconstructs
the system state using the measured output ȳ. The observer
is given as

˙̂x = Ax̂+Bu+ g(ȳ, ŷ), ŷ = Cx̂, (5)

where x̂ ∈ Rn is the estimate of x and g : Rp×Rp → Rn is
the innovation term to be designed such that g(ȳ, ŷ) = 0 at
ȳ = ŷ. When the system output is under an attack according
to the attack model (3), the actual output information is not
available to the state observer. Thus, the observer needs to
take into account the attacks on the system output. To this
end, we design an observer that uses the complete output
vector when there is no attack and only the non-attacked
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output components when the system output is under attack.
More specifically, the proposed observer under the attack
model (3) is given as

˙̂x =

{
Ax̂+Bu+ g1(Cx,Cx̂) if t /∈ Ta,
Ax̂+Bu+ g2(C̃x, Cx̂) if t ∈ Ta

(6)

where g1, g2 : Rp × Rp → Rn are to be designed. Given a
set Ta ⊂ R, the feedback law κ assigning u is defined as

κ(t, x̂, y) =

{
κ1(x̂, y) if t /∈ Ta,
κ2(x̂, y) if t ∈ Ta,

(7)

where κ1, κ2 : Rn ×Rp → Rm are functions to be designed
under nominal operation (i.e., when the system is not under
an attack) and under attack, respectively. Notice that the
closed-loop system resulting from the composition of (2)
and (6) with κ as in (7) can be expressed as in (1) with
z = (x, x̂).

We make the following assumption on S in (2).

Assumption 1. The pair (A,B) is controllable and the pair
(C,A) is detectable.

Based on the structure of the observer in (2) and the
observer-based feedback law in (7), the approach followed
in this paper for safety under attacks for system (2) is as
follows.
Approach: Given a closed set S ⊂ Rn, the system (2),
and the attack model (3), our approach is to compute sets
X0, X̂0, Ŝ0 ⊂ S and design functions g1, g2 for the observer
in (6) and functions κ1, κ2 for the observer-based feedback
law κ as in (7) such that each solution pair t 7→ (x(t), x̂(t))
to the closed-loop system resulting from the composition of
(2) and (6) with κ satisfies the following properties:

1) For each t0 ∈ T1 such that x(t0) ∈ X0 and x̂(t0) ∈ X̂0,
the x component of the resulting closed-loop solution
satisfies x(t) ∈ S for all t ∈ [t0, t0 + Ta);

2) For each t0 ∈ T2 such that x(t0) ∈ S and x̂(t0) ∈ Ŝ0,
and for t̂0 = max{t0, inft≥t0 T1}, the x component of
the resulting closed-loop solution satisfies x(t̂0) ∈ X0

and x(t) ∈ S for all t ∈ [t0, t̂0).

Remark 1. The sets X̂0 and Ŝ0 denote the sets of estimates
before and after an attack, respectively. We will design these
sets in the next section. Item 1 in our solution approach
encodes conditional invariance of the set S for system (2)
with respect to X0, under an attack with maximum duration.
Upon the requirement of the state to be in S at the end of
every attack, item 2 encodes safety of system (2) with respect
to (X0,Rn\S) during the time-intervals with no attacks, and
the state to be in X0 at the beginning of the next attack.

IV. SWITCHING OBSERVER DESIGN

Under an attack on the system output of the form (3),
it might not be possible to reconstruct the state of (2) for
a full-state feedback control design. Specifically, under the
considered attack model, the rank of the observability matrix
Õ for the pair (C̃, A), namely, rank(Õ) = ñ, potentially

smaller than n. Thus, there might be n−ñ > 0 eigenvalues in
the closed right-half plane for the dynamics of the estimation
error resulting for any observer design under attack. Keeping
this in mind, the switching observer in (6) is defined as

˙̂x =

{
Ax̂+Bu+ L(Cx− Cx̂) if t /∈ Ta,
Ax̂+Bu+ L̃(C̃x− C̃x̂) if t ∈ Ta,

(8)

where L ∈ Rn×p and L̃ ∈ Rn×p̃ is such that ñ (with ñ ≤ n)
eigenvalues of the matrix A − L̃C̃ lie in the open left-half
plane. On the other hand, since (C,A) is detectable under
Assumption 1, we can design L such that all the eigenvalues
of (A − LC) are in the open left-half plane. Now, define
e = x−x̂ as the estimation error to obtain the error dynamics
given as

ė =

{
(A− LC)e if t /∈ Ta,
(A− L̃C̃)e if t ∈ Ta

(9)

with e(0) = x(0)− x̂(0). Next, we analyze the error bounds
when there is no attack, i.e., at each t /∈ Ta.

A. Analysis under No Attacks

Consider the starting instant of an interval during which
there is no attack on the system output, namely ti2 ∈ T2 ∪
{0}, with i ∈ N . The following result is the initial step to
guarantee conditional invariance of S with respect to X0 for
the system (2) when there are no attacks.

Lemma 1. Given system (2), suppose Assumption 1 holds.
For given Tna, ē0 > 0, an associated observer (8), and
corresponding error dynamics (9), if at the i−th interval
of no attacks with i ∈ N, |e(ti2)| ≤ ē0 with ti2 ∈ T2, then
the state estimation error satisfies |e(t)| ≤ γ1(t−ti2)ē0 for
all t ∈ [ti2, t

i+1
1 ], where

γ1(t) := c1 exp
(
−λ̄1t

)
(10)

with λ̄1 = λm(Q)
2λM (P ) , c1 =

√
λM (P )
λm(P ) , and L such that for

some symmetric positive definite matrices P and Q, −Q =
(A− LC)⊤P + P (A− LC) holds.

Notice that the above analysis (with a nominal Luenberger
observer) can be used to show that starting from e(ti2) with
ti2 ∈ T2 ∪ {0}, i ∈ N, the error exponentially converges to
δB in time Tna, where δ = γ1(Tna)|e(ti2)|, and stays in that
ball until the next attack starts at ti+1

1 .

Remark 2. The Luenberger observer used when there are
no attacks is just one choice of a state estimator. It is also
possible to use a finite-time stable state estimator [16], or
any other observer that has faster convergence guarantees.

B. Analysis under Attacks

During the attack on the output, we use a different observer
gain designed for the pair (C̃, A). Since it might not be
possible to place all the eigenvalues of A − L̃C̃ in the
open left-half plane, the matrix L̃ in (8) can be designed
to minimize the maximum eigenvalue of A − L̃C̃, which
minimizes the rate of growth of the error during attacks.

2471

Authorized licensed use limited to: MIT Libraries. Downloaded on November 21,2023 at 15:03:03 UTC from IEEE Xplore.  Restrictions apply. 



Based on L̃, we compute the maximum growth rate possible
in the estimation error e during intervals of attacks in the
system output, assuming a worst-case attack.

Under the attack model (3), a subset of the state space
may still be detectable for the pair (C̃, A). Thus, under the
observer (8) for t ∈ Ta, it is possible that some of the
eigenvalues of the matrix A − L̃C̃ are in the open left-
half plane. To bound the error growth during the attack, we
consider the general case in which we can decompose the
matrix A− L̃C̃ into submatrices Â11 and Â22, such that the
eigenvalues of Â11 are in the open left-half plane. To this
end, let Φ ∈ Rn×n be an invertible matrix consisting of the
generalized eigenvectors of the matrix A− L̃C̃ such that

Φ−1(A− L̃C̃)Φ =

[
Â11 0ñ×(n−ñ)

0(n−ñ)×ñ Â22

]
(11)

where Â11 and Â22 are Jordan blocks such that λM (Â11) <
0 and 0p×q ∈ Rp×q is a matrix consisting of zeros1. Also,
let Φ−1 =

[
Φ̂⊤

1 , Φ̂
⊤
2

]
, and define the change of coordinates

z = Φ−1e. Then, e = Φz, and in the new coordinates, the
error dynamics are expressed as

ż = Φ−1ė =

[
Â11 0ñ×(n−ñ)

0(n−ñ)×ñ Â22

]
z.

Define z = (z11, z22), where z11 ∈ Rñ and z22 ∈ Rn−ñ

so that we have ż = (ż11, ż22) = (Â11z11, Â22z22). We can
now state the following result providing a bound on the state
estimation error under attacks.

Lemma 2. Given system (2), suppose Assumption 1 holds.
For given Ta, ē0 > 0, an associated observer (8), and
corresponding error dynamics (9), if at the i−th interval of
attack with i ∈ N>0 and maximum length Ta, |e(ti1)| ≤ ē0
with ti1 ∈ T1, then the state estimation error satisfies |e(t)| ≤
γ2(Ta)ē0 for all t ∈ [ti1, t

i
2], where

γ2(Ta) := max
t∈[0,Ta]

ĉ1 exp
(
−λ̂1t

)
+ ĉ2 exp

(
λ̂2t

)
(12)

with

ĉ1 = |Φ||Φ̂1|

√
λM (P̂ )

λm(P̂ )
, ĉ2 = |Φ||Φ̂2|, λ̂1 =

λm(Q̂)

2λM (P̂ )
, λ̂2 = |Â22|,

and L̃ such that for some symmetric positive definite matrices
P̂ and Q̂, −Q̂ = Â⊤

11P̂ + P̂ Â11 holds.

C. Global Bound on Estimation Error

Before we state the first main result of the paper, we make
the following assumption on the initial state estimation error.

Assumption 2. The closed set S ⊂ Rn is such that there
exists Ē > 0 such that, for the initial state x(0) ∈ S and
initial estimate x̂(0) ∈ S, the error satisfies |e(0)| = |x(0)−
x̂(0)| ≤ Ē.

A pre-defined initial error bound helps us guarantee the
existence of a switching observer of the form (6) such that
safety is guaranteed.

1Note that it is always possible to find the Jordan form of the matrix A−L̃C̃,
even when it is not diagonalizable.

Now, we provide a result on bounds on the state estimation
error under the proposed switching observer algorithm.

Theorem 1. Given system (2), suppose Assumptions 1 and
2 hold for Ē > 0. For given Tna, Ta > 0, an associated
observer (8), and corresponding error dynamics (9), let
c1, λ̄1, ĉ1, ĉ2, λ̂1, λ̂2 > 0 be defined as per Lemma 1 and
Lemma 2. If Tna and Ta are such that γ1(Tna)γ2(Ta) ≤
1 with γ1 as in (10) and γ2 as in (12), then |e(t)| ≤
γ1(0)γ2(Ta)Ē for all t ≥ 0. In addition,

• if there is an attack at time t = 0, then |e(t)| ≤ Ē for
all t ∈ T1 ∪ {0}, and

• if the first attack is launched after at least Tna seconds,
then |e(t)| ≤ Ē for all t ∈ T2 ∪ {0}.

Remark 3. Consider a set X0, and for a given x0 ∈ X0

such that x(0) = x0, define the set X̂0(x0) := {x ∈ Rn :
x ∈ x0 + ĒB}. Notice that thanks to Theorem 1, for each
x0 ∈ X0, and each x̂0 ∈ X̂0(x0) we have that each solution
pair t 7→ (x(t), x̂(t)) to (2) from x(0) = x0, x̂(0) = x̂0

satisfies
1) Boundedness of error at all times: |x(t) − x̂(t)| ≤ Ē

for all t ≥ 0;
2) Maximum error at the beginning of each attack: |x(ti1)−

x̂(ti1)| ≤ γ1(Tna) for each i ∈ N>0 .
Under an attack, it is possible that the error grows, and

when there is no attack, the error decreases. However, using
the proposed observer, the norm of the error always remains
bounded by γ1(0)γ2(Ta)Ē, as long as Assumption 2 on the
initial estimation error holds.

V. OBSERVER-BASED FEEDBACK LAW DESIGN

A. Construction of Sets of Initial Conditions
Consider a closed set S ⊂ Rn, Ta, Tna > 0, maps γ1 and

γ2 as in (10) and (12), and Ē > 0 in Assumption 2. Pick
ε > (1 + γ1(0)γ2(Ta))Ē Define the set of initial states as

X0 := S \ (∂S + εB). (13)

Note that under Assumption 2, X0 is nonempty. Now, given
x0 ∈ X0, set x(0) = x0 and define the set-valued map

X̂0(x0) := x0 + ĒB. (14)

Thus, for each x0 ∈ X0 and x̂0 ∈ X̂0(x0), it holds that
|x0 − x̂0| ≤ Ē. Additionally, notice that x̂0 ∈ X̃ , where

X̃ := X0 + ĒB (15)

which is an inflation of X0 by Ē. This construction of
the sets of initial conditions, namely, X0 and X̂0, leads to
conditional invariance of S, as shown below.
Lemma 3. Given the system (2), the observer (8), the
observer-based feedback law κ (7), a closed set S ⊂ Rn,
X0 as in (13), and X̂0 as in (14), consider the solution
t 7→ (x(t), x̂(t)) to the resulting closed-loop system from the
composition of (2) and (8) with κ from x(0) ∈ X0, x̂(0) ∈
X̂0(x(0)) and Ta, Tna, Ē, such that conditions of Theorem
1 are satisfied. If S \ (∂S+(1 + γ1(0)γ2(Ta))ĒB) ̸= ∅ and
x̂(t) ∈ X̃ for all t ≥ 0, then x(t) ∈ S for all t ≥ 0.
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In words, the set of initial states X0 and the set of initial
estimates X̂0 are defined such that the initial estimation error
is upper bounded by Ē. Furthermore, we define X̃ in (15)
as the set resulting from an inflation of X0 by Ē. Under this
construction, for the resulting closed-loop system from the
composition of (2) and (8) with κ, forward invariance of X̃
for the observer (8) implies conditional invariance of the set
S for the system (2) with respect to X0. Thus, the control
objective is to enforce the estimate x̂ in the set X̃ at all times
to guarantee safety of S.

B. QP-based Feedback Law Synthesis
We use a control barrier function (CBF)-based approach

for guaranteeing forward invariance of a subset X̄ of the set
X̃ in (15) for (8) (see [15]). In order to use CBF for forward
invariance, we need a zero sublevel set representation of the
set X̄ . To this end, consider the function h : Rn → R and
define a set

X̄ := {x̂ | h(x̂) ≤ 0} ⊂ X̃. (16)

Given an observer-based feedback law κ assigning the
input u = κ(t, x̂, ȳ) of (8), consider a solution t 7→ x̂(t)
to (8) from x̂(0) ∈ X̄ . For the given measurement ȳ, it is
sufficient to ensure that for each x̂(0) ∈ X̄ , the estimate
satisfies x̂(t) ∈ X̄ ⊂ X̃ , for all t ≥ 0. The CBF condition
for guaranteeing this when there is no attack is:

∂

∂x̂
h(x̂(t)) (Ax̂(t) +Bκ1(x̂(t), ȳ(t))

+L(ȳ(t)− Cx̂(t))) ≤ α1(−h(x̂(t))), (17)

for all t ≥ 0, where t 7→ ȳ(t) is the measured output signal,
and the CBF condition under attack is

∂

∂x̂
h(x̂(t)) (Ax̂(t) +Bκ2(x̂(t), ȳ(t))

+L̃(ȳs(t)− C̃x̂(t))
)
≤ α1(−h(x̂(t))), (18)

for all t ≥ 0, where t 7→ ys(t) is the secured output signal
and α1, α2 are class-K functions. We can use a Quadratic
Programming (QP) formulation to compute the input u in
the respective cases.

Consider the following QP for each x̂ ∈ X̄ and ȳ such
that x ∈ S for input synthesis when there is no attack:

min
(v,η)

1

2
|v −Kx̂|2+1

2
η2 (19a)

s.t.
∂

∂x̂
h(x̂) (Ax̂+Bv + L(ȳ − Cx̂)) ≤− ηh(x̂), (19b)

where K is the optimal LQR gain for the pair (A,B). Next,
we use a similar QP to compute the input under attack.
Consider the following QP for each x̂ ∈ X̄ and ys = C̃x
such that x ∈ S:

min
(vs,ζ)

1

2
|vs −Kx̂|2+1

2
ζ2 (20a)

s.t.
∂

∂x̂
h(x̂)

(
Ax̂+Bvs + L̃(ys − C̃x̂)

)
≤− ζh(x̂). (20b)

The objective functions in (19) and (20) set the convex
minimization problem to obtain the closest control action
to the LQR control that satisfies the constraints. The ad-
ditional decision variables, namely (η, ζ), respectively, are
slack variables. Denote the solutions to (19) and (20) as
t 7→ u∗

1(x̂(t), ȳ(t)) and t 7→ u∗
2(x̂(t), ȳ(t)), respectively.

To guarantee continuity of these solutions with respect to
x̂, we need to impose the strict complementary slackness
condition (see [17]). In brief, if the i−th constraint of (19) (or
(20)), with i ∈ {1, 2}, is written as Gi(x̂, ȳ, uQP ) ≤ 0 with
uQP = (v, η) (respectively, uQP = (vs, ζ) for (20)), and the
corresponding Lagrange multiplier is λ̄i ∈ R≥0, then strict
complementary slackness requires that λ̄∗

iG(x̂, ȳ, u∗
QP ) < 0,

where u∗
QP and λ̄∗

i denote the optimal solution and the
corresponding optimal Lagrange multiplier, respectively. We
are now ready to state the second main result of the paper.

Theorem 2. Given system (2), suppose that Assumptions
1 and 2 hold. For the attack model (3), the observer (8),
and a closed set S ⊂ Rn, let X0, X̂0, X̃ and X̄ be given
as in (13)-(16), and assume that the strict complementary
slackness holds for the QPs (19) and (20) for all x̂ ∈ X̃ .
The following holds:

1) If S \ (∂S + (1+γ1(0)γ2(Ta))ĒB) ̸= ∅, then, for
each x̂ ∈ int(X̄), the QPs (19) and (20) are feasible
and their respective solutions t 7→ u∗

1(x̂(t), ȳ(t)), t 7→
u∗
2(x̂(t), ȳ(t)) are continuous on int(X̄).

2) For each x0 ∈ X0 and x̂0 ∈ X̄ ∩ X̂0(x0), each
solution pair t 7→ (x(t), x̂(t)) to the closed-loop system
resulting from assigning the input u of (2) and (8) to the
observer-based feedback law κ in (7) with κ1(x̂, ȳ) =
u∗
1(x̂, ȳ) and κ2(x̂, ȳ) = u∗

2(x̂, ȳ), satisfies x̂(t) ∈ X̄
and x(t) ∈ S for all t ≥ 0.

VI. NUMERICAL EXAMPLE

Consider a system S as in (2), with state x = (x1, x2) ∈
R2, input u ∈ R, and dynamics ẋ = (x2, u), y = (x1, x2)
where ya = x1 is only available when there are no attacks.
DoS attacks have maximum duration of Ta = 1.6 seconds
and are launched only after at least Tna = 0.047 seconds
without an attack. Here, u is designed such that every
response t 7→ x(t) to S satisfies x(t) ∈ S := {(x1, x2) ∈
R2 : x2

1 + 2x2
2 + 2x1x2 − 35 ≤ 0} for all t ≥ 0, given that

x(0) ∈ X0 := S \ (∂S + εB), with ε = 2.01.
An observer as in (8) is designed. Given that Assumption

1 is satisfied, and by setting L = [ 32 0.5
0.5 32 ] and L̃ = [ 0.053.2 ],

we have λ(A− LC) = −31.75± i0.43, and λ(A− L̃C̃) =
{0.5,−3.2}. Given x0 = (5.3,−2.4), x̂0 = (4.9,−2.1), and
Ē = 0.55, we have that |e(0)| = 0.5 ≤ Ē, so Assumption 2
holds.

Thus, by applying Lemma 1, with P = [ 1 0
0 1 ] , Q =

[ 63 0
0 64 ], and given that every pair of subsequent attacks

are separated by at least Tna seconds, the estimation error
satisfies |e(t)| ≤ γ1(t− ti2)e(t

i
2) for all t ∈ [ti2, t

i+1
1 ], i ∈ N,

γ1(Tna = 0.047) = 0.226, and is displayed in green2 in
Figure 1. Given that the growth rate of the exponential
defining the function γ1 is negative, the bound on the error
norm decreases at each interval without attacks.

In addition, by applying Lemma 2 with ĉ1 = 1.12, ĉ2 =
1.19, λ̂1 = 3.2, λ̂2 = 0.5, P̂ = [ 1 0

0 1 ] , Q̂ = [ 6.4 0
0 6.4 ], Φ =[

1 −0.25
0 0.97

]
, and Â22 = 0.5, given that every attack has

a maximum duration of Ta seconds, the estimation error

2Code at https://github.com/HybridSystemsLab/SafeRecovery-DoSAttacks
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Fig. 1. Solutions to the 2D system and state estimation error during worst-
case attacks of Ta = 1.6s, for x0 = (5.3,−2.4), x̂0 = (4.9,−2.1), and
Ē = 0.55. In the third plot, the bound (purple) is defined as in Theorem 1.

Fig. 2. Phase portrait of ẋ = (x2, u), y = (x1, x2) with state estimation
for safe recovery of DoS attacks in the measurements of x1. By initializing
the estimation x̂ in the Ē−ball (green) around x(0), the set X̄ (purple)
is rendered forward invariant for x̂ (orange), and the safe set S (yellow)
conditionally invariant for x (dark blue) with respect to the set of allowed
initial states, namely X0 (light blue), via the control barrier function. The
set X̃ (scarlet) denotes the allowed initial observer states.

satisfies |e(t)| ≤ γ2(Ta)|e(ti1)| for all t ∈ [ti1, t
i
2], i ∈ N>0

where γ2(Ta) = 2.65, and is displayed in light blue in Figure
1. Thanks to Theorem 1, given that γ1(Tna)γ2(T1) ≤ 1, the
error satisfies |e(t)| ≤ c1γ2(Ta)Ē = 1.46 for all t ≥ 0.

In Figure 2, the set X0 is a deflation of the set S by
ε, and the set X̃ is an inflation of the set X0 by Ē. The
set of initial estimations, X̂0(x0), is defined as the ball of
radius Ē centered at x0. Thus, the estimator x̂ is initialized
at X0(x0) ⊂ X̃ . The set X̄ := {(x1, x2) ∈ R2 : h(x) ≤
0} ⊂ X̃ is defined by the barrier function h(x) = x2

1 +
2x2

2 + 2x1x2 − 12.5. Given that the set S ⊂ Rn is such
that S \ (∂S + (1 + γ1(0)γ2(Ta))ĒB) ̸= ∅, by assigning
K = [2.3016, 2.3671] and solving the QPs (19) and (20)
at every point of the trajectory x̂(t) ∈ X̄ to assign the input
action, thanks to Theorem 2, we ensure that x̂(t) ∈ X̄ for
all t, and consequently, x(t) ∈ S for all t.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a switched controller design
that, together with a switched observer, ensures a linear
time-invariant system to recover safely from finite-time DoS

attacks in some of the system outputs. Conditional invariance
of a set is guaranteed with respect to a subset of initial
conditions by employing a barrier function approach and
bounding the estimation error at all times. Future works
include studying safe-recovery controllers under uncertainty
in the model parameters, noise in the unattacked sensors,
nonlinearities in the system dynamics, and only approximate
information on the attack times. In addition, an implemen-
tation of a finite-time observer and a tighter bound to relax
the conservatism of the conditions are to be considered.
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