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Abstract— Multi-agent robotic systems often require control
design for a multi-objective problem, such as maintaining a
safe distance from other agents as well as obstacles, main-
taining network connectivity for building team knowledge and
completing team objectives for performance. Such problems are
intractable in the centralized framework for large-scale systems.
Thus, a distributed framework is necessary where each agent
only requires its neighbors’ information while being able to
contribute towards completing the team objective. However, a
decentralized control framework often leads to a sub-optimal
solution, resulting in the system getting stuck in local minima
or a deadlock. This paper addresses the issue of deadlock
resolution via a hierarchical control framework. We propose
a high-level planner for temporary goal assignment and a low-
level controller that drives the agents to their assigned goals.
The proposed framework is distributed in nature, making it
scalable to large-scale multi-agent systems. We perform exten-
sive simulation and experimental case studies to demonstrate
the efficacy and need for such a hierarchical control framework.

I. INTRODUCTION

Multi-agent systems (MAS) have a lot of potential appli-
cations in today’s world such as warehouse operations [1],
[2], self-driving cars [3], coordinated navigation of drones
in a dense forest for search-and-rescue missions [4], among
others. For such safety-critical MASs, it is important to
design controllers that not only guarantee safety in terms
of collision and obstacle avoidance but are also scalable
to large-scale multi-agent problems. Furthermore, in certain
applications of MAS such as coverage [5] and formation con-
trol [6], it is also required that the underlying graph topology
remain connected for sharing information and building team
knowledge. Existing methods for multi-agent coordination
and motion planning are incapable of solving such problems
that consider all these aspects, i.e., safety, connectivity, and
performance, in terms of reaching a goal destination or
following a given trajectory, in a scalable manner.

Connectivity: Assessing the connectivity of a MAS in
a centralized framework is a relatively easy problem. One
only needs to compute the second smallest eigenvalue of
the corresponding Laplacian matrix of the graph topology
to check the connectivity [7]. However, maintaining the
connectivity of a network in a centralized manner is not
scalable as it requires extensive exchange of information
among the nodes. As shown in [8], it is possible to assess
and maintain the connectivity of the global network in a
distributed manner using local information. While there is
a lot of work on maintaining the initial graph topology of
MAS (see [9], [10]), it is restrictive to not allow the network
topology to change as it can lead to suboptimal performance.
There is very little work on allowing graph topology to
change while maintaining connectivity in a scalable manner
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Fig. 1: Overview of the hierarchical control framework.

[8]. Furthermore, to the best of the authors’ knowledge, there
is no work in the literature that reconfigures the network
topology to assist with deadlock resolution and completing
the global team objective in a distributed manner.

Safety: For the safety objective, in recent years, control
barrier functions (CBFs) have become very popular in both
single and multi-agent problems for safety-critical systems
[11]–[15] where the existence of a CBF guarantees the ex-
istence of a control input that can keep the system safe. The
CBFs are used in a quadratic programming (QP) framework
for online control synthesis. However, as discussed in [16],
CBF-based methods are myopic in nature and only using
CBFs for a multi-task problem such as maintaining safety
and connectivity, and reaching a destination location for
performance, can potentially lead to infeasibility of the un-
derlying QP. They may also lead to the system getting stuck
in an undesirable equilibrium point away from the desired
destination [17]. A high-level planner for addressing some of
these issues has been studied for single-agent systems [18],
[19] but not for multi-agent systems.

Multi-agent control: Other multi-agent motion planning
methods include path planning methods that generate safe
paths for each agent [20]. Such methods include but are not
limited to variants of rapidly exploring random trees (RRT)
[21], [22], solving mixed integer linear program (MILP)
for computing safe paths for agents [23]–[25] or model
predictive control (MPC)-based methods [26]. However, all
of these methods suffer from scalability issues and do not
consider connectivity maintenance as an objective. Moreover,
predictive methods such as MPC are also difficult to im-
plement in a distributed manner without making strong as-
sumptions about other agents’ behaviors or using additional
compatibility constraints [26]. Furthermore, MPC suffers
from the curse of dimensionality with an increasing number
of agents in MAS, and its computational complexity does not
permit its usage in real-time control synthesis (as illustrated
in numerical experiments). More recently, learning-based
methods have shown promising results in safe multi-agent
coordination [14], [27], [28]. However, the focus of these
works is collision avoidance, not deadlock resolution.

Contributions In this paper, we present a hierarchical



control framework that uses a high-level planner that helps
to resolve deadlocks so that the MAS does not get stuck
in local minima and a CBF-QP-based low-level controller
that helps guarantee safety, connectivity maintenance, and
performance. To avoid deadlocks, we propose a heuristic
temporary goal assignment for the high-level planner that
uses each agent’s local observations. We employ a bidding-
based mechanism [8] at the low level to assist with the
completion of the multi-objective problem. In particular,
we remove edges from the graph topology that help the
MAS move closer to its destination. Finally, we illustrate the
efficacy of the proposed hierarchical control framework on
hardware experiments where a nominal CBF-QP gets stuck
in deadlocks.

II. PROBLEM FORMULATION

In this work, we design a distributed control framework for
large-scale robotic systems with multiple objectives. First,
we start with describing the dynamics of the individual
robots (referred to as agents henceforth), and then, we list
the individual as well as the team objective for the system.
The agent dynamics are given by żi = f(zi) + g(zi)ui,
where f, g are locally Lipschitz continuous functions with
X ⊂ Rnx denoting agents’ workspace and Ui ⊂ Rnu the
control constraint set. We use pi ⊂ zi to denote the position
(or location) of the i−th agent in the global coordinates.

The workspace X consists of stationary obstacles Ol ⊂ R2

for l ∈ {1, 2, . . . ,M}, denoting walls, blockades and other
obstacles in the path of the moving agents. Each agent has
a limited sensing radius Rs > 0 and the agents can only
sense other agents or obstacles if it lies inside its sensing
radius. The time-varying connectivity graph G(t) = (V, E(t))
dictates the communication network among the agents, i.e.,
if there is an edge between agent i and j in G(t) at a
time instant t ≥ 0, then the agents (i, j) can exchange
information necessary for completing the team objective.
Here, V = {1, 2, . . . , N} denotes the set of nodes and
E(t) ∈ RN×N denotes the set of edges where (i, j) ∈ E(t)
if ∥pi(t) − pj(t)∥ ≤ Rs. The corresponding time-varying
adjacency matrix, given as Aij(t) = 1 if ∥pi(t) − pj(t)∥ ≤
Rs and 0 otherwise. The set of neighbors for agent i is
denoted as Ni(t) := {j | Aij(t) = 1}. The graph topology
G(t) is said to be connected at time t ≥ 0 if there is a
path between each pair of nodes (i, j) at t. One method of
checking the connectivity of the graph topology is through its
Laplacian matrix, defined as L(A(t)) := D(t)−A(t), where
D(t) is the degree matrix defined as Dij(t) =

∑
j

Aij(t)

when i = j and 0 otherwise. From [29, Theorem 2.8], we
know that the graph topology G(t) is connected at time t if
and only if the second smallest eigenvalue of the Laplacian
matrix is positive, i.e., λ2(L(A(t))) > 0. Now we have all
the elements to introduce the problem statement.

Problem 1. Consider the multi-agent system with initial
conditions {xi(0)} such that the underlying graph G(t) is
connected at t = 0, safety parameters dm, robs > 0, a
sensing radius Rs > 0, a set of stationary obstacles {Oj},
and goal locations {pgi}. Design a control policy πi using
information available in agent i’s sensing radius, such that

Fig. 2: Illustration of leader assignment for evading deadlock
situation due to presence of an obstacle.

1. Safety: Agents maintain a safe distance from other
agents and obstacles at all times, i.e., ∥pi(t)−pj(t)∥ ≥
2dm and min

l
min
p∈Ol

∥pi(t)− p∥ ≥ dm for all t ≥ 0;

2. Connectivity: The graph G(t) remains connected at all
times, i.e., λ2(L2(t)) > 0 for all t ≥ 0;

3. Performance: Agents reach their respective goal loca-
tions, i.e., ∥pi(t)− pgi∥ → 0.

Let Mi(t) := {j | min
p∈Oj

∥pi(t)− p∥ ≤ Rs} denote the set

of obstacles that are in agent i’s sensing region at time t.

III. HIERARCHICAL CONTROL ARCHITECTURE

A. High-level planner

In a multi-agent motion planning problem without a high-
level supervisor, the presence of obstacles can lead to dead-
lock situations as illustrated in the first image of Figure 2.
Here, the agents at the end of the network chain try to go
directly toward their respective goal locations while trying to
maintain connectivity as well. Such situations can be evaded
by assigning a temporary goal location via leader assignment
where the assigned leader acts as temporary goal xgi,temp for
agent i. In a simple scenario consisting of a small number
of agents and obstacles such as the one illustrated in Figure
2 with just 5 agents and 1 obstacle, it is possible to assign
the leader manually. We propose a mechanism for choosing
a leader and temporary goal assignment (see Algorithm 1).

1) Leader-based goal assignment: We use a leader-based
goal assignment to resolve a deadlock due to the presence of
an obstacle. This assignment is triggered when the average
speed of the MAS

∑
i |ṗi|
N < umin, i.e., it falls below a

minimum threshold umin > 0. Since the graph topology is
connected, the average speed (which requires global infor-
mation) can be computed through consensus updates. In this
case, the agent closest to its goal and with maximum mobility
is assigned as the leader of the MAS. That, is the leader is
chosen as

lead = argmin
i∈A

∥pi − pgi∥
∥ṗi|pgi,temp∥

, (1)

where ṗi|p denotes the derivative of the position of the
i−th agent under the temporary goal pgi,temp. The moving
speed |ṗlead∥ of the leader depends on whether the leader
is moving towards its actual goal locations or a temporary
goal location, as described later. The follower assignment
is carried out as follows. Let Alead(t) be the set of agents
that have been assigned as a leader with the set initiated as
Alead(t, 0) = {lead}. Then, the k−th follower with k ≥ 1
is chosen as

followk = argmin
j∈A\Alead(t,k−1)

min
i∈Alead(t,k−1)

∥pi − pj∥, (2)



and this follower is added to the set of the lead-
ers, i.e., Alead(t, k) = Alead(t, k − 1) ∪ {followk}.
The leader for the k−th follower is given as leadk =
argmini∈Alead(t,k−1) ∥pfollowk

−pi∥. The process is repeated
till each agent is assigned an agent to follow. Next, for each
agent i that is a given minimum distance away from its goal,
i.e., if ∥pi − pgi∥ ≥ dmin, their temporary goal is chosen as
the location of their leaders, i.e., pgi,temp = pilead .

2) Temporary goal for leader: In the leader-follower
mode, the lead agent may be stuck in a deadlock. To
tackle this, a temporary goal for the lead agent pglead,temp is
assigned for the leader as

pglead,temp = argmax
p∈B⊕plead

∥ṗlead|p∥,

where B ⊕ p ⊂ R2 is a unit circle centered at p ∈ R2.
Intuitively, the temporary goal is assigned in a way that leads
to the maximum moving speed of the leader.

Algorithm 1: Leader-follower assignment
Data: E, {pi}, {pgi}, {|ṗi|}, umin, dmin

Result: pg,temp, lead
if

∑
i |ṗi|
N < umin then

lead = argmin
∥pi−pgi∥

∥ṗi|pgi,temp
∥

Alead(t,0) = {lead}
for k ∈ [1, N − 1] do

choose followk per (2)
Alead(t,k) = Alead(t,k−1) ∪ {followk}
klead = argmini∈Alead(t,k−1) ∥pfollowk

− pi∥
if ∥pk − pgk∥ ≥ dmin then

pgk,temp = pklead

end
end
if |ṗlead| < umin and ∥plead − pglead∥ ≥ dmin then

pglead,temp = argmax
p∈B⊕plead

∥ṗlead|p∥

end
end

Terminal goal re-assignment: If any of the agents reach
their goals and obstruct the rest of the agents, the agent that
is stuck due to another agent that has already reached its
goal location swaps its goal location with the latter.

We prove that the proposed algorithm does not get stuck in
any deadlocks in Appendix I, where deadlocks are defined as
the existence of a non-zero length period where the average
speed of the MAS is zero.

B. QP-based low-level planner
The high-level planner provides the leader and the goal

information to the controller at the low level. The low-
level controller synthesizes an input ui to keep the system
safe from obstacles and other agents and drive the system
trajectories toward its goal location. Safety is encoded using
control barrier functions (CBFs) while convergence to the
goal via control Lyapunov functions (CLFs). For defining the
CLFs and CBFs, we use a unicycle dynamical model for the
agents given as ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = ωi

where zi = (xi, yi, θi) denotes the states and ui = (vi, ωi)

the control input of the i−th agent for i ∈ {1, 2, . . . , N}.
We define pi = (xi, yi) as the position vector of the i−th
agent and X ⊂ R3 be the workspace of the MAS.

Recall that the safety constraint for the l−th obstacle is
defined as xi ∈ Sl = {x = (p, ·) | min

po∈Ol

∥p−po∥ ≥ dm}. To

this end, we define a quadratic barrier function as Bl,p(pi) =
1
2 min
po∈Ol

∥pi − po∥2 − 1
2r

2
obs so that Bl,p(pi) ≥ 0 implies that

the agent i is at a safe distance robs from the l−th obstacle.

The steering input ωi does not appear in the time-
derivative of the function Bl,p along the i−th agents tra-
jectories. With this choice of CBF, while it is possible to
maintain safety (using ui = 0 as input), it is not possible
to guarantee that the agents reach their goal locations. Thus,
we introduce an additional barrier function for evading the
obstacle, defined as Bl,θ(θi) = 1

2 |θi − θo∥ − 1
2θ

2
threshold,

where θo = tan−1 ( yo−yi

xo−xi
) with (xo, yo) = argmin

po∈Ol

∥pi −

po∥ and θthreshold > 0, so that the input ωi helps steer the
agent i away from the obstacle Ol. For a convex-shaped
obstacle with a smooth boundary (i.e., defined as a level-set
of a smooth function), the functions Bl,p and Bl,θ are also
smooth. Similarly, barrier functions for safety with neighbors
Bij,p, Bij,θ and for connectivity B̃ij,p, B̃ij,θ can be defined.
Furthermore, for convergence to the goal, we can define
quadratic Lyapunov functions Vp(pi) := 1

2∥pi − pgi∥2 and
Vθ(θi) :=

1
2 |θi−θig|2−θ2g,thres where θig = tan−1 (

ygi−yi

xgi−xi
).

Using the CBF theory for safety (see e.g., [12]),
we use the following CBF conditions Ḃl,p(pi) ≥
−αl,p Bl,p(pi), Ḃl,θ(θi) ≥ −αl,θ Bl,θ(θi) for all l ∈ Mi,
Ḃij(xi) ≥ −αij Bij(xi) and ˙̃Bij(xi) ≥ −α̃ij B̃ij(xi) for
all j ∈ Ni, in the respective safe sets. Here αl,p, αij , α̃ij ∈ R
are scalar variables. Note that the time derivative of Bij (and
B̃ij) reads Ḃij = LfBij(xi) + LgBij(xi)ui +

∂Bij

xj
ẋj , and

requires ẋj . The evaluation of ẋj requires (xj , uj) which
can be obtained through active communication between
neighboring agents. In a distributed infrastructure with a
limited sensing radius, it is reasonable to assume active
communication with (possibly a small number of) neighbors.

Note that the CBF and CLF are linear inequalities
in the input variable ui. Also, assume that the control
input constraints are given as Ui = {u | Auu ≤ bu}
with appropriately sized matrix and vector Au, bu. Noting
this, and using the relaxed CLF constraint from [30] and
slack-variable variation of CBFs from [31], we set a QP
with the CBF-CLF conditions and the input constraints as
the linear inequality constraints to minimize a quadratic cost
consisting of the input ui and the slack terms introduced for
feasibility. In particular, a CBF condition with slack term
takes the form LfBl,p(pi)+LgBl,p(pi)ui ≥ −αl,p Bl,p(pi)
with αl,p ∈ R a variable of optimization along with the
input ui. We set up the following QP(Ñi) with zi =
(ui, {αl,p}, {αl,θ}, {αij,p}, {αij,θ}, {α̃ij,p}, {α̃ij,θ}, δp, δθ)



for each agent i:1

min
zi

1

2
zTi Qzi + FT

i zi, (3a)

s.t. Ḃl,p(xi) ≥ −αl,pBl,p(xi), ∀l ∈ Mi (3b)

Ḃl,θ(xi) ≥ −αl,θBl,θ(xi),∀l ∈ Mi (3c)

Ḃij,p(xi) ≥ −αij,pBij,p(xi),∀j ∈ Ni (3d)

Ḃij,θ(xi) ≥ −αij,θBij,θ(xi),∀j ∈ Ni (3e)
˙̃Bij,p(xi) ≥ −α̃ij,pB̃ij,p(xi),∀j ∈ Ñi (3f)
˙̃Bij,θ(xi) ≥ −α̃ij,θB̃ij,θ(xi),∀j ∈ Ñi (3g)

V̇p(xi) ≤ −λp Vp(pi) + δp (3h)

V̇θ(θi) ≤ −λθ Vθ(θi) + δθ, (3i)
Auui ≤ bu, (3j)

where Q is a positive definite matrix weighing
cost on various optimization variables and Fi =
[−ui,prev,−1,−1, . . . ,−1, 1]T where ui,prev is the
last computed control input of agent i. The choice of the
linear term FT z helps in choosing an input ui that is
close to the previously computed input so that the input
signal does not have large jumps, while −1 scaling on
slack variables αi, αij , α̃ij penalizes their negative values
and promotes their positive values, and +1 scaling on
δ penalizes its positive values and promotes its negative
values. The argument Ñi in QP(Ñi) denotes the set of
neighbors for which connectivity constraint is imposed
in (3f)-(3g). This formulation is required for the bidding
mechanism in Section III-C. Note that the QP (3) for agent
i requires the control actions of neighbors j ∈ Ni. Some
works address this problem and propose methods of solving
CBF-QPs for MRS in a distributed fashion (see e.g., [32]).
Based on [31], the following result can be stated about
the feasibility of the QP and continuity of its solution,
which is required for using the existence and uniqueness
of the closed-loop solutions for Nagumo’s theorem [33] to
guarantee safety via forward invariance arguments.

Theorem 1. Assume that the QP (3) is feasible at the
boundary of the intersection of the sets Si, Sij , S̃ij . Then,
the QP (3) is feasible for all xi ∈ Si ∪ Sij ∪ S̃ij \ {xgi}.
Furthermore, if the strict complementary slackness condition
( [34]) holds, then the solution z∗i of QP (3) is continuous on
the set int

(
Si ∪ Sij ∪ S̃ij \ {xgi}

)
and the resulting control

input u∗
i keeps the agent i safe from its neighbors and

obstacles and connected to its neighbors at all times.

Remark 1. It is possible to use more sophisticated CBFs
and CLFs for the safety and convergence requirements,
respectively. In particular, learning-based approaches as
adopted in [28] can be used to learn distributed certificates
for MAS.

The multi-constrained QP can lead to agents getting stuck
in local minima. In particular, under conflicting constraints
of maintaining connectivity with a neighbor situated at
one location and another neighbor situated at a diagonally

1The actual CBF-CLF inequalities are omitted for the sake brevity.

opposite end. Such deadlock situations become a hindrance
for the multi-agent team in completing their task. In many
such situations, it might be possible to delete an edge while
maintaining the connectivity of the graph, such that leaving
a neighbor out of the connectivity constraint enables the QP
to find a solution that moves the team along their desired
paths. Motivated by this, we propose a novel mechanism of
removing edges based on an auction mechanism in [8] that
can help the MAS achieve its team objective.

C. New auction mechanism for edge deletion

The authors in [8] presented a bidding mechanism to
remove edges from the graph topology G while maintaining
the connectivity. For the sake of brevity, we summarize the
three major steps of the auction mechanism:

1) Computing the set of safe neighbors such that removing
an edge with any one of such neighbors does not break
the local (and consequently, global) connectivity;

2) Bidding to break edge with one such safe neighbor; and
3) Using a max-consensus update (see [8]) to find the win-

ning bid and remove an edge from the graph topology.
We use the same auction mechanism with specific bidding
designed for resolving deadlocks and completing the team
objective. We propose a bidding method where each agent
computes a low-level controller assuming that a particular
connection does not exist. Then, based on whether that
controller helps achieve the team objective or not, the agent
bids a higher or a lower value. The bidding method is
described in more detail below.

QP-based bidding The second step in the auction mech-
anism requires each agent i to choose an edge from the set
Si and a corresponding bid bi for the auction. To this end,
we propose a bidding mechanism based on the solution of
the QP. In particular, for each agent i, let QP(N ) denote
an instance of a QP where the connectivity constraints are
imposed for each neighbor j ∈ N and its corresponding
solution as u∗

i (N ). At a time t, we first compute the set of
safe neighbors Si(t). Then, we compute the set of control in-
puts {u∗

i (Ni \ji)}ji∈Si . Using this, we propagate the system
dynamics one step in future to compute {x(t+1,N\ji}ji∈Si

and the corresponding distances of the agent i from its goal
location {di(t+1,N \ji)}ji∈Si where di = ∥xi−xgi∥. Then
the selection function g and the bid values bi are defined as
follows when Si ̸= ∅:

g(Si) = argmax
ji∈Si

(
λ2(Ai \ (i, ji))

∥di(t)∥
∥di(t+ 1,Ni \ ji)∥

)
,

(4a)

bi = Ki min

(
100,max

ji∈Si

(
∥ṗi|u∗

i (Ni\ji)∥
∥ṗi|u∗

i (Ni)∥

))
, (4b)

where we choose Ki = 1 + ϵ if i = g(Sg(Si)) and Ki = 1
otherwise, with ϵ > 0, to handle tiebreaks. The selection
function g chooses a safe neighbor based on whether remov-
ing an edge helps move the agent i closer to its destination.
The bid value is based on the norm of the control input
and so, if removal of an edge leads to a high norm of
the resulting control input as compared to the case when
all of the neighbor are considered, then the bid is high.



Fig. 3: Closed-loop trajectories with the proposed hierarchi-
cal controller (top figures), only CBF-QP controller (middle
figures) and MPC (bottom figures) for apartment scenario.

Furthermore, if the set of safe neighbors is empty, then the
bid value is set to −1. Here, a constant scaling factor Ki is
added to the bid to reward the removal of an edge (i, j) if
it benefits both agent i as well as agent j. If j = g(Si) and
i = g(Sj), i.e., both agents i, j choose to remove the edge
(i, j), then the removal of this common edge benefits both
the agents and it is rewarded by boosting the bid value.

IV. EVALUATIONS

We perform several numerical and hardware case studies
to illustrate the efficacy of the proposed method. For the
numerical case studies, the main objective is to illustrate
1) deadlock resolution capabilities as opposed to a nominal
CBF-QP without a high-level planner, and 2) scalability
to many agents. Robot experiments illustrate the proposed
method can be used on real robots. In each of the case
studies, the simulation/experiment parameters are as follows:
R = 1.7, r = 0.1, dt = 0.1. We use CBF-QP and a
centralized model predictive control (MPC) as baselines
for performance comparison. All the numerical experiments
are performed on an Intel Xeon Platinum 8260 CPU @

Fig. 4: Snapshots of closed-loop trajectories for the third
numerical case study on crossing scenario with the proposed
hierarchical controller (top figures), only CBF-QP controller
(middle figures), and MPC (bottom figures).

2400MHz with 4GB RAM. We use Casadi with snopt
solver for MPC and osqp solver in Python for QPs.

Numerical case studies: We consider three scenarios for
numerical case studies, namely, an apartment scenario con-
sisting of 5 agents, a crossing scenario consisting of 10
agents, and a narrow passage scenario inspired from [35]
consisting of 24 agents,

Apartment scenario: The first scenario represents a ware-
house or an apartment scenario where the agents are required
to reach another part of the workspace while remaining inside
the boundary of the workspace and avoiding collisions with
walls and other obstacles. The agents start in one corner of
the workspace and propagate their way through the obstacle
environment to reach their respective destinations. Figure 3
shows that the proposed framework (top figures) leads to the



Fig. 5: Closed-loop trajectories with the proposed hierar-
chical controller (top figures) and just CBF-QP controller
(bottom figures) for narrow passage scenario.

successful completion of the task via temporary goal assign-
ment for evading deadlocks. Only CBF-QP (middle figures)
cannot lead to the completion of the task and the agents
get stuck behind an obstacle. Furthermore, as can be seen
from the bottom figures in Figure 3, MPC (bottom figure)
also fails to complete the task. Furthermore, each MPC step
takes about 20 seconds of computational time, which makes
it impossible to use for real-time implementation.

Crossing scenario: Next, we generate a crossing sce-
nario to increase the inter-agent interaction between different
groups. In this scenario, two groups of agents are initialized
at the bottom left and bottom right corners of the workspace
with their goals located on diagonally opposite corners.
Figure 4 plots the closed-loop trajectories under the proposed
hierarchical control framework as well as only the CBF-
QP controller. Once again, the CBF-QP controller leads to
a deadlock while the proposed method completes the task.
MPC also fails to complete the task as can be seen from the
bottom figures in Figure 4.

Narrow scenario: To illustrate the scalability of the
proposed method, we consider the narrow passage case
study in [35]. Here, we choose 6 agents at each corner to
exchange their locations with the agents initialized at the
diagonally opposite corner. There are four square obstacles
situated in the center of the workspace that create narrow
passages for these agents. In addition to the safety and goal-
reaching requirements in [35], we also impose that the groups
at each corner should maintain the connectivity of their

underlying graph topology at all times. Figure 5 illustrates
the performance of the proposed framework where the agents
resolve various deadlocks on their way and safely navigate
through a crowded narrow passage. When only the CBF-QP
controller is used, the agents get stuck in a deadlock. In the
interest of space, we do not include the plots for MPC here,
but it also fails to complete the task and the agents get stuck
in a deadlock (the results are reported in the video).

Computational time: We report the computational time for
the proposed method, for the CBF-QP controller, and for
MPC for the above three scenarios in Table I. While the
proposed method and the CBF-QP method take 10 ms for
each step for each agent, MPC takes a much longer time for
the last two scenarios and hence, cannot be used for real-time
implementation.

Hardware experiments: We validate our approach in hard-
ware experiments on the first scenario from the numerical
case studies, using four Turtlebot3 ground robots. We use an
off-board ground computer for sending control commands
to the robots via ROS, while the state information of the
robots is obtained using a Vicon motion capture system.
We perform experiments on the apartment scenario. Figure
6 shows the snapshots from the experiments under the
proposed framework as well as the CBF-QP controller. The
experiments confirm the numerical simulation results where
the CBF-QP leads to deadlocks while the proposed method
is capable of completing the tasks. Also, the additional
steps in the proposed method do not lead to computational
overhead and the proposed hierarchical control framework
can be used for real-time deadlock resolution. A video of all
the numerical and hardware experiments is available here:
https://tinyurl.com/icra23GHF.

Fig. 6: Snapshots from robot experiments with the proposed
hierarchical control (top figures) and only CBF-QP controller
(bottom figures).

TABLE I: Per agent per step computation time.
Scenario # Agents Method Average time (s)

Apartment 5

Proposed method 0.01
CBF-QP 0.0092
MPC (T = 10) 0.1
MPC (T = 20) 0.3

Crossing 10

Proposed method 0.0051
CBF-QP 0.0036
MPC (T = 10) 0.3
MPC (T = 20) 0.8

Narrow 24

Proposed method 0.0089
CBF-QP 0.0059
MPC (T = 10) 0.45
MPC (T = 20) 1.9

https://tinyurl.com/icra23GHF


V. CONCLUSIONS

In this paper, we presented a distributed hierarchical
control framework for a multi-agent system that uses a high-
level planner to assign temporary goals to agents when they
get stuck in a deadlock. In addition, we proposed a novel
QP-based bidding mechanism to break redundant edges in
the graph topology that helps the multi-agent achieve its
team objective. We illustrate the efficacy of the proposed
method through extensive numerical case studies and also
provide robot experiments that showcase the performance of
the hierarchical controller as compared to CBF-QP which
gets stuck in deadlocks and MPC which is very slow for
real-time implementation.

One of the main limitations of the heuristic goal assign-
ment method used as the high-level planner in the proposed
framework is that it is not scalable to a large MAS operating
in a dense obstacle environment. Future work involves using
reinforcement learning-based methods for learning when and
what temporary goal should be assigned to each agent for
deadlock resolution. Furthermore, the current QP-based low-
level controller uses very simple quadratic CBFs which might
not be very effective in handling highly dense obstacle sce-
narios. Neural barrier certificates provide a viable alternative
to handle complex scenarios and we will study how we can
encode both safety and connectivity in a single certificate for
handling complex environments and large-scale MAS.
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APPENDIX I
PROOF OF NO DEADLOCKS

Recall that a deadlock is defined as the existence of an
interval τ ⊂ R, given as τ = [a, b) where a, b ∈ R,
where the average speed of the MAS 1

N

∑
i |ṗi|(t) = 0

for all t ∈ τ and the Lebesgue measure of the interval
µ(τ) > 0, where µ(τ) = |τ | := b − a. Let a ∈ R be a
time instant when the average speed of the MAS is zero,
i.e., 1

N

∑
i |ṗi|(a) = 0. Per the leader-assignment condition

in Algorithm 1, the condition 1
N

∑
i ∥ṗi(t)∥ < umin triggers

a leader assignment step at time t. The leader is chosen as the
agent that has the minimum value of ∥pi−pgi∥

∥ṗi|pgi,temp
∥ . There are

two cases possible: ∥ṗi|pgi,temp
∥ = 0 for all i ∈ V or there

exists at least one i ∈ V such that ∥ṗi|pgi,temp∥ > 0. The
latter case leads to a non-zero average speed of the MAS,
leading to b = a in τ = [a, b), and thus, a deadlock cannot
occur in this case. Next, we prove that

∥ṗi|pgi,temp
∥ = 0

for all i ∈ V is only possible at t = 0. Note that
∥ṗi|pgi,temp

∥ = 0 for all i ∈ V is possible only if all the
agents are occluded with obstacles and none of the agents
have any free space to move. This is only possible at a = 0,
i.e., the MAS is initialized in a location that is occluded by
obstacles such that it cannot move. For a > 0, since the MAS
can reach such a location where the average speed becomes
lower than the leader-assignment threshold, there exists at
least one agent that has free space around it to move and
hence, ∥ṗi|pgi,temp

∥ = 0 is not possible for all i ∈ V for any
a > 0 and hence, the MAS cannot get stuck in a deadlock.
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