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Abstract— A sudden actuator fault in a safety-critical
system can cause safety violations and lead to severe
consequences. Existing fault-tolerant control (FTC) ap-
proaches normally focus on maintaining system perfor-
mance and do not consider system safety. Control Bar-
rier Functions (CBFs) have emerged as useful tools from
control theory for providing safety guarantees for control
systems. However, existing applications of CBFs either do
not consider actuator faults or only consider the special
case where it is known which actuator is faulty or the
case when redundant actuators are present to maintain
controllability even under faults and failures. In this paper,
we address the problem of safe recovery under a more
realistic scenario where it is completely unknown which
actuator is faulty and when the fault occurs. We develop
a novel model-free learning framework for an output-based
neural fault-detector that detects when a fault occurs and
in which actuator. Based on the learned functions, we
propose a switching framework for automatically detecting
and recovering from faults. We evaluate our method on a
case study involving a Crazyflie quadrotor with a motor
failure.

Index Terms— Fault detection, Machine learning, Neural
networks

I. INTRODUCTION

SAFETY-critical systems are those where violation of
safety constraints could result in loss of lives, significant

property damage, or damage to the environment. In real-life
applications, many cyber-physical control systems are safety-
critical, including autonomous cars and aircraft. In this context,
safe control requires finding a control policy that keeps the
system within a predefined safe region at all times.

Designing and verifying safe control policies for complex
autonomous systems is challenging because of the need to bal-
ance safety guarantees with other control objectives [1]. Con-
trol Barrier Functions (CBFs, [1], [2]) have been extensively
used for certifying that a closed-loop system satisfies desired
safety requirements. In recent years, CBF-based approaches
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Fig. 1: Safe recovery using learned CBFs and a fault-detection
mechanism.

have achieved promising results in many safety-critical control
systems, ranging from self-driving cars [1] to aircraft [2]–[4].

Unfortunately, prior works on safe control using CBFs have
paid little attention to the effects of actuator faults. While
[2] proposes fault-tolerant control using CBFs, it is limited to
systems with redundant actuators. Failures and faults without
actuator redundancies have been studied in the field of fault-
tolerant control (FTC), which has been applied extensively to
applications such as aircraft [5], [6], and spacecraft attitude
controls [7].

There is a plethora of work on fault-detection and iden-
tification (FDI); we refer the interested readers to the survey
articles [8]–[10] that discuss various approaches of FDI used in
the literature. In particular, the residual-based method has been
used very commonly in prior work, where the expected output
(under the commanded input and a known system model)
and the actual output of the system are compared for fault
detection. Such residual information requires the knowledge
of the system model, and thus, is model-dependent. In this
work, we design a model-free FDI mechanism that only uses
the actual output of the system and the commanded input to
the system, and does not use the residual information. There
is some work on using LSTM-based FDI, e.g., [11], [12], but
it is limited to a very narrow class of faults. As noted in [13],
prior work on neural network-based model-free FDI relies on
the reconstruction of the model (e.g., [14]), or generating the
residual information using Kalman filtering (see e.g., [15]) or
extended state-observers (see [16]). Koopman operator-based
FDI techniques such as [14], [17] reconstruct a linear repre-
sentation of the model for calculating the residual information.
In such approaches, the approximations used for computing a
finite-dimensional Koopman operator adversarially affect the
performance of FDI. Another common data-driven approach
of FDI is based on Principle Component Analysis (PCA),



in particular, using Auto-associative neural network (AANN)
[18], [19]). However, AANN-based methods are generally
applicable for sensor-faults and its fixed five-layer architecture
limits its applications to higher dimensional systems. The
method in [13] also estimates a reduced-order model of the
system as an intermediate step. The main disadvantage of
model-based FDI methods is that their performance can de-
grade significantly due to model uncertainties or imperfections
in the used model for designing the FDI mechanism and
the actual system model. To overcome this limitation, in this
paper, we present a truly model-free approach, where we
do not require to either learn the system model or create a
reduced-order representation of the model. Instead, we use
the system output and the commanded input as the features
of a neural network, which directly predicts whether there is
an actuator fault. We illustrate through numerical experiments
that the model-free FDI mechanism performs at par (and even
better in some cases than) the model-based mechanisms. We
also illustrate the robustness of the proposed method against
modeling uncertainties and demonstrate through numerical
examples that while the performance of the model-based FDI
mechanism drops significantly under model uncertainties, the
performance of the designed model-free approach remains the
same.
Notation: We denote by R and R+ the sets of real and non-
negative real numbers, respectively. |x| denotes the Euclidean
norm of a vector x ∈ Rn. The Lie derivative of a continuously
differentiable function h : Rn → R along a vector field
f : Rn → Rm at a point x ∈ Rn is denoted as Lfh(x) :=
∂h
∂x (x)f(x). A continuous function α : R+ 7→ R+ is class-K
if α(0) = 0 and α is strictly increasing.

II. PROBLEM FORMULATION

We begin by considering a continuous-time nonlinear dy-
namical system of the form

ẋ = f(x) + g(x)u, (1a)
y = ρ(x), (1b)

for state x ∈ X , control input u ∈ U , with locally Lipschitz
dynamics f : X → Rn, g : X → Rn×m, and state and control
sets X ⊂ Rn and U ⊂ Rm, respectively. Here, ρ : Rn → Rp

denotes the output map of the system.
In this paper, we study the safety of S under actuator faults.

Specifically, we consider an actuator fault occurring at some
unknown time tf ≥ 0:

u(t, x) =

{
π(t, x) if t ≤ tF ;

diag(Θ) π(t, x) if t > tF ,
, (2)

where Θ = {0, 1}m ∈ Rm is the vector denoting whether
an actuator is faulty or not, and diag : Rm → Rm×m maps
a vector in Rm to a diagonal matrix in Rm×m. If the i−th
actuator is faulty, then Θi = 0 and the rest of each of the
elements of Θ is 1. Another way to represent this model is:

u(t, x) = π(t, x) + ∆u, (3)

where ∆ui = −πi(t, x) and 0, otherwise. Here, the set
of faulty signals can be collectively represented as ∆U =

{∆u1,∆u2, . . . ,∆um}, where ∆ui represents the case when
the i−th actuator is faulty. We can now state the problem
studied in this work. Consider system S with fault-model (2)
for a given ∆U and disjoint sets of safe and unsafe states
Xsafe,Xunsafe ⊆ X , i.e., Xsafe ∩ Xunsafe = ∅. We assume that
the fault signal is uniformly observable through the system
output so that it is possible to detect the fault using system
output. Given this context, we consider the following control
synthesis problem:

Problem 1 (Fault-Tolerant Safe Control Synthesis Prob-
lem). Compute the largest possible subset X0 ⊂ Xsafe and
a control policy π such that the following safety property
holds for all trajectories x : R+ → Rn of the closed-
loop dynamics under the policy π for all ∆u : R+ → ∆U
x(0) ∈ X0 =⇒ x(t) /∈ Xunsafe ∀t ≥ 0.

Note that in some of the prior work (see e.g. [20]), the
safe and the unsafe regions are chosen as complementary sets,
i.e., Xsafe = Rn \ Xunsafe. While it is possible to consider
such a setup, we prefer a more general setup where there is
a non-empty region X \ (Xsafe ∪ Xunsafe). The reason for
considering such a formulation is justified later in the paper,
where we explain how it makes it easier to learn a CBF due
to the presence of this middle region. We begin by reviewing
the standard definition of CBFs in the fault-free case, then
introduce our notion of fault-tolerant CBFs in the next section.

Definition 1 (Control Barrier Function (CBF) [1]). A function
h : X 7→ R is a CBF for system S if there exists a class-K
function α such that:

h(x) < 0 ∀x ∈ Xunsafe, h(x) ≥ 0 ∀x ∈ Xsafe, (4)
sup
u∈U

{Lfh(x) + Lgh(x)u+ α(h(x))} ≥ 0 ∀x ∈ Xsafe. (5)

Given a CBF, we can define a set of admissible controls
K(x) = {u ∈ U | Lfh(x) + Lgh(x)u + α(h(x)) ≥ 0}
so that any sufficiently smooth control input from this set is
guaranteed to keep the system safe, per the following lemma.

Lemma 1 (Corollary 2 in [1]). If h is a CBF, then any locally
Lipschitz continuous control policy π : X → U such that
π(x) ∈ K(x) ∀x ∈ X renders the closed-loop system S safe.

When U is a polytope, we can define a CBF-based controller
using a Quadratic Program (QP) as in [21], where h is used
to filter a nominal controller πnominal : D → Rm:

πpre(x) = argmin
u∈U,α∈R

1

2
∥u− πnominal(x)∥22 +

1

2
α2 (6a)

s.t. Lfh(x) + Lgh(x)u ≥ −α h(x). (6b)

Here, the class-K function is chosen as a linear function
α(h(x)) = αh(x), with α as a decision variable instead of
being fixed to help with the feasibility of the QP [21]. In
this architecture, the CBF filters the nominal controller to
ensure safety even as the nominal controller pursues other
objectives (e.g., reaching a goal location or tracking a ref-
erence trajectory). This approach is agnostic to the choice of
πnominal and guarantees to preserve safety under any choice of
nominal controller [1]. The nominal controller can be designed



to drive the system trajectories to a goal location xg ∈ Rn.
In this work, we use an LQR-based nominal controller, i.e.,
πnominal(x) := KLQR(x − xg), where the LQR gain matrix
KLQR is computed by linearizing the system (1) at the goal
location xg .

Our approach to solving Problem 1 involves these steps:
1. Learn a fault-detector and a mechanism to switch the

control policy from a pre-fault policy πpre to a post-fault
πpost in response,

2. Learn a pre-fault CBF hpre such that the corresponding
safety region Spre : {x | hpre(x) ≥ 0} ⊂ Xsafe and a
fault-tolerant CBF hpost such that Spost = {x | hpost ≥
0} ⊆ Spre for the fault model (2) for a given ∆U .

First, we will combine these pre- and post-fault policies
by deriving and proving the soundness of a CBF-based fault
detection and switching mechanism. Then, we will provide
the extension of the CBF theory to the fault-tolerant case and
present our learning-based approach to finding pre- and post-
fault CBFs hpre and hpost, respectively. Finally, we will utilize
these learned CBFs in a QP framework for synthesizing cor-
responding control policies. The resulting closed-loop system
is depicted in Figure 1.

III. NEURAL FAULT-DETECTION AND ISOLATION

Model-free FDI: The faults must be detected correctly
and promptly for the safe recovery of the system. We use
a learning-based approach to design a fault-detection mech-
anism. Let Θ ∈ {0, 1}m denote the fault vector, where
Θi = 0 indicates that i−th actuator is faulty, while Θi = 1
denotes it is not faulty. Let ΘNN : Y × U → Rm be the
predicted fault vector, parameterized as a neural network.
Here, Y = {y(·) | y(·) = ρ(x(·)), x(·) ∈ X} is a
function space consisting of trajectories of the output vector,
and U = {u(·) | u(·) ∈ U} is a function space consisting of
input signals. To generate the residual data, the knowledge of
the system model is essential, which makes the residual-based
approach model dependent. This is the biggest limitation of
this approach, as modeling errors can lead to severe perfor-
mance issues in fault detection due to model uncertainties.
To overcome this, we propose a model-free NN-based FDI
mechanism that only uses the system input and output (y, u)
as the feature data, i.e., it does not require the model-based
residual information. For a given time length T > 0, at any
given time instant t ≥ T , the NN function ΘNN takes a finite
trace of the system trajectory y(t−τ)|Tτ=0 and the commanded
input signal u(t − τ)Tτ=0 as input, and outputs the vector of
predicted faults.

Model-based FDI: For model-based FDI mechanisms, the
residual data is also required as an additional feature to the
NN. The error vector ỹ is defined as the stepwise error between
the actual output of the system with potentially faulty actuators
and the output of the system assuming no faults, i.e., ỹ(t) =
y(t)− ȳ(t) where y is the output of (1) with faulty input and
ȳ is the output of ˙̄x = f(x̄) + g(x̄)u, ȳ = ρ(x̄), with ȳ(kτ) =
y(kτ), k = 0, 1, 2, . . . , where τ > 0 is sampling period for
data collection. In most of the prior literature, only ỹ (or x̃,
depending on whether the approach is output-based or state-
based) information is used for designing FDI. In the numerical

experiments, we compare the performance of an FDI with just
ỹ trajectory as the feature, and (y, ỹ, u) trajectories as features.

Training data: For training, the trajectory data is collected
under all one-actuator faults where one of the actuators is
completely faulty, i.e., results in zero input. At each time
instant t ≥ T , it is possible that only a portion of the trajectory
y(·) is generated under a faulty actuator. That is, the possible
input to the system is u(t− τ, Tf )Tτ=0 := [u(t−T ), u(t−T +
1), · · · , uf (t− T + Tf ), uf (t− T + Tf + 1), · · · , u(t)] (with
the corresponding output trajectory y(t − τ, Tf )

T
τ=0 and the

error trajectory ỹ(t − τ, Tf )
T
τ=0), where Tf ∈ [0, T ] dictates

the time instant when the fault occurs. Thus, the NN for
fault prediction must be trained on all possible combinations
of occurrences of fault. Hence, our training data includes
T⋃

Tf∈0

(
y(t− τ, Tf )

T
τ=0, ỹ(t− τ, Tf )

T
τ=0, u(t− τ, Tf )

T
τ=0

)
(see

Figure 2). In every training iteration, we generate Ntraj =
N1 × (m × Tf + 2) trajectories, so that we have N1 > 0
trajectories for faults in each of the m actuators with all
possible lengths of trajectories under one faulty actuator in
[0, Tf ], and 2 × N1 > 0 trajectories without any fault. The
loss function for training is defined as

LΘ =

Ntaj∑
j=1

[
||Θj,rNN

(
yj(·), ỹj(·), uj(·)

)
−Θj∥ − ϵ

]
+
, (7)

where Θj ∈ {0, 1}m is the fault vector used for generating the
data for the j−th trajectory and 0 < ϵ ≪ 1. In each training
epoch, we generate N = 250×m× 100 + 25000 trajectories
of length Tf and maintain a buffer of 1.5 M trajectories. The
trajectory data for training is generated by randomly sampling
the initial conditions {x(0)}N1

1 from the safe set Xsafe and
rolling out the closed-loop system under an LQR input for
both the fault and non-fault scenarios. We train the NN until
the loss reduces to 10−3. We use a Linear-Quadratic Regulator
(LQR) input to generate the training data (since solving a CBF-
based QP is very slow for collecting a sufficient amount of
training data). In our experiments, we illustrate that the trained
NN is highly robust to the kind of input used for trajectory
generation and can predict fault with the same accuracy for the
trajectories generated by CBF-based QPs. During training, we
optimize the loss function using stochastic gradient descent,
and we train the pre- and post-fault networks separately. The
number of trajectories in the buffer is capped at Nbuf so that
once the maximum number of trajectories are collected, the
earlier trajectories are dropped from the buffer. The training is
performed either till the number of iterations reaches NM > 0,
or the loss drops below 10−3 after at least Nm < NM training
epochs. During each training epoch, we use a batch size of
5000 trajectories and perform 100 iterations of training on all
the buffer data.

IV. LEARNING-BASED FAULT-RECOVERY

Next, we present a learning framework for designing a
fault-recovery control law using CBFs. Before presenting the
learning framework, we first extend the definition of CBFs to
provide safety guarantees in the presence of actuator faults,



Fig. 2: General neural-network architecture for failure predic-
tion. The training data includes all possible trajectories with
different lengths of faulty input (the violet color represents the
portion of the trajectory with faulty input).

and we present a theorem proving the soundness of fault-
tolerant CBF-based control.

Definition 2 (Fault-tolerant CBF). Consider a control-affine
system S and disjoint sets Xsafe,Xunsafe ⊆ X , Xsafe ∩Xunsafe =
∅. Assume that the fault vector ∆u takes values from ∆U =
{∆u1, , ...,∆um}. A function hpost : X 7→ R is a fault-tolerant
CBF if there exists a class-K function α such that:

hpost(x) < 0, ∀x ∈ Xunsafe, (8)
hpost(x) ≥ 0, ∀x ∈ Xsafe, (9)

sup
u∈U

inf
∆u∈∆U

{
Lfhpost(x) + Lghpost(x)(u+∆u)

}
≥ −α(hpost(x)) ∀x ∈ X . (10)

We define the admissible controls for a fault-tolerant CBF
by Kpost(x) = {u ∈ U | Lfhpost + Lghpost(u + ∆uj) +
α(hpost(x)) ≥ 0, ∀j = 1, ...,m} for the failed systems.
In other words, the control input is admissible for the fault-
tolerant CBF if it is admissible at each point of the set ∆U .

Theorem 1. If hpost is a fault-tolerant CBF, then any locally
Lipschitz control policy with πpost(x) ∈ Kpost(x) ∀x ∈ X
renders the closed-loop system S safe for any ∆u ∈ ∆U .

The proof follows from using the Definition 2 with
Lemma 1, similar to the proof of Theorem 2 in [22], and
is omitted in the interest of space.

The corresponding fault-tolerant CBF-based QP controller
for a system with a loss of control authority is:

πpost(x) = argmin
u∈U,α∈R

1

2
∥u− πnominal(x)∥22 +

1

2
α2 (11a)

s.t. Lfhpost(x) + Lghpost(x)u+ Lghpost(x)∆ui

≥ −α hpost(x), ∀i ∈ {1, ...,m}. (11b)

We provide a result on the feasibility, regularity, and correct-
ness of the solutions of the QPs (6) and (11) (see [21]).

Lemma 2. The QPs (6) and (11) are feasible for each x ∈
int(Xsafe). Furthermore, if the strict complementary slackness
holds for (6) (respectively, (11)), then πpre (respectively, πpost)
is continuous on int(Xsafe).

One method to encode m constraints in (11b) via a single

constraint is to use the following optimization formulation:

πpost(x) = argmin
u∈U,α∈R

1

2
∥u− πnominal(x)∥22 +

1

2
α2 (12a)

s.t. Lfhpost(x) + Lghpost(x)u+min
i
Lghpost(x)∆ui

≥ −α hpost(x). (12b)

It is easy to solve mini Lghpost(x)∆ui by enumerating m
options (this can be done before solving the QP since this term
does not depend on any decision variables), and the resulting
optimization in (12) is still a QP with just one inequality
constraint. Note that the post-fault CBF constraint assumes
the worst-case fault, and hence, learning one single post-fault
CBF with the worst-case fault is sufficient to guarantee safe
recovery from all possible faults in any one of the actuators.

In this work, we use a linear class−K function α(h(x)) =
α h(x) with |α| ≤ αM for some αM > 0, and modify (10) as

sup
|α|≤αM

inf
∆u∈∆U

{
Lfh(x) + Lgh(x)(u+∆u) + α h(x)

}
≥ 0,

(13)

The satisfaction of this modified CBF condition implies the
existence of a parameter α ∈ [−αM , αM ] and u ∈ U for
each faulty signal ∆u ∈ ∆U such that safety can still be
guaranteed. Similarly, (5) can also be modified. Thus, we only
need to learn the pre-and the post-CBFs.

The CBFs hpre, hpost : X → R are parameterized as neural
networks that are trained offline. Here, we also learn πpre and
πpost as witnesses that the feasible sets of the corresponding
CBF QP controllers (6) and (12) will be non-empty. Once the
CBFs are learned, we use the CBF and the nominal controller
πnominal online in a QP to find the safe control policy π. To
learn these functions, we use an iterative learning procedure.
At each step, we generate N training points XI = {xi}
randomly sampled from X . We then define an empirical loss
for training the pre-fault CBF hpre to satisfy the conditions in
Definition 1:

Lpre =
a1
Nsafe

∑
x∈XI∩Xsafe

[ϵ− hpre(x)]+

+
a2

Nunsafe

∑
x∈XI∩Xunsafe

[ϵ+ hpre(x)]+

+
a3
Ntrain

∑
x∈XI

[
− sup

|α|≤αM

(
Lfhpre(x)

+ Lghpre(x)πpre + αhpre(x)
)
+ ϵ

]
+

(14)

where a1, a2, a3 > 0 are tuning parameters, ϵ > 0 is a
small parameter that allows us to encourage strict inequality
satisfaction, [·]+ stands for the ReLU function, and Nsafe and
Nunsafe are the number of points in the training set that fall
into Xsafe and Xunsafe, respectively. For post-fault CBF, we
train m CBFs, one corresponding to a fault in each of the
actuators. For k − th post-fault CBF with k ∈ {1, 2, . . . ,m},
we modify the empirical loss by replacing Lghpre(x)πpre
with Lghpost(x)πpost−Lgkhpost(x)πpre,k to account for zero
actuation from k−th actuator. We use a similar iterative
training mechanism as described in Section III to train the



CBFs, where instead of trajectories, we sample data points
x ∈ Rn.

Switching law: Based on the CBFs and FDI mechanism,
we are ready to propose a switching-based control algorithm
for input assignment. The control law is given as

π(t, x) =


πpre(x) if t ≤ T ;

πpre(x), if t ≥ T,minΘNN (t, y) > Θtol;

πk∗

post(x), otherwise;
(15)

where 0 < Θtol ≪ 1 is the prediction tolerance, and
Θk,NN (t, y) = Θk,NN (y(t− τ)Tτ=0, u(t− τ)Tτ=0) denotes the
k−th component of the predicted Θ vector. The predicted
faulty actuator is given by k∗ = argminΘk,NN (t, y) if
minΘNN (t, y) < Θtol, and the control algorithm switches
to post-fault CBF hpost,k∗ for synthesizing πk∗

post for safe
recovery.

V. NUMERICAL EVALUATIONS

The primary objective of our numerical experiments is to
evaluate the effectiveness of our method in terms of fault
detection. We consider an experimental case study involving
the Crazyflie quadrotor with a fault in one of its motors.
The 6-DOF quadrotor dynamics are given in [23] with x ∈
R12 consisting of positions, velocities, angular positions, and
angular velocities, and u ∈ R4 consisting of the thrust at each
of four motors. The output is chosen as y = [px, py, pz, ϕ̇, θ̇, ψ̇]
which can be readily obtained using onboard GPS and IMU.
In the case study, we consider the scenario when one of the
motors is entirely faulty, i.e., produces zero input.

The state limit set is defined as X = {x | |px|, |py|, |pz| ≤
25, |u|, |v|, |w| ≤ 10, |ϕ|, |θ|, |ψ| ≤ π

3 , |p|, |q|, |r| ≤ 2}, the
safe region is this case is defined as Xsafe = {x ∈ X | 2 ≤
pz ≤ 24, |w| ≤ 8}, where z is the altitude of the quadrotor.
Similarly, the safe region for the post-fault case is defined as
X̄safe = {x ∈ X | 1.9 ≤ z ≤ 24.1, |w| ≤ 8.1} so that
Xsafe ⊂ X̄safe. The unsafe region is defined as Xunsafe =
{x ∈ X | pz ≤ 0.2 or pz ≥ 24.5 or w ≤ −9 or w ≥ 9}, so
that Xsafe ∪ Xunsafe ̸= X . This allows a non-empty region
in X , defined as Xmid = X \ (Xsafe ∪ Xunsafe) where there
is no sign-requirement for the CBF. This helps improve the
learning as it is generally hard to enforce that a NN has a
specific zero level set, and this non-empty region Xmid allows
the barrier function to smoothly decay from positive values in
Xsafe to negative values in Xunsafe.

In the training, we use fully-connected NNs with tanh
activation functions to parameterize the CBFs hpre and hpost.
At each learning iteration for hpre (respectively, hpost), we
generate 30,000 data points {xi}, out of which 10,000 data
points are sampled from the boundary of Xsafe (respectively,
X̄safe), 10,000 from the safe set Xsafe and 10,000 from the
unsafe set Xunsafe, and add these points to the buffer of the
previously collected samples. The number of sampling points
in the buffer is capped at 106 so that once the maximum
number of samples are collected, the earlier samples are
dropped from the buffer. The training is performed either till
the number of iterations reaches 500, or the loss drops below

Fig. 3: Failure prediction accuracy for CBF-QP input (solid
lines) and LQR input (dashed lines). The performance of
model-free (Ours) FDI with data (y, u) is shown in blue, while
the one with all the data (y, u, ỹ) in red.

10−3. For the post-fault CBF training, we assume that motor
#1 is faulty for the CBF condition. During each training step,
we use a batch size of 5000 samples and perform the training
10 times on all the data currently present in the buffer. Adam
algorithm is used for optimization with learning rate 1×10−4.

A fault is predicted if min
i

min
n

Θi,NN (Φn(y)) < Θtol,
where Θtol = 0.1. The experiments are run to check the
prediction accuracy of the NN-based FDI mechanism for
various lengths of data with failed actuators between 0 and
Tf = 100. We report the minimum of the prediction accuracy
for fault detection when there is a fault as well as when there
is no fault, across all 4 motors. Thus, a high overall prediction
accuracy implies that FDI can correctly identify which actuator
has a fault and when. We sample 1000 initial conditions
randomly from the safe set Xsafe to generate trajectories
for test data, where 200 trajectories are generated for each
of the faults and 200 trajectories are generated without any
fault. Each trajectory is generated for 200 epochs with fault
occurring at t = 100. We feed the moving trajectory data
(y(k−100, k), u(k−100, k), ỹ(k−100, k) to the trained NN-
based FDI starting from k = 100. For a given k ∈ [100, 200],
the portion of trajectory data with faulty actuator is k − 100.

We use a long-short-term-memory (LSTM)-based NN ar-
chitecture for FDI where the LSTM layer is followed by 2
linear layers (as we observed superior performance of LSTM
over multi-layer perceptron (MLP)). We first compare the
prediction accuracy of the model-free NN-FDI (θNN (y, u))
and model-based FDI. Figure 3 shows the prediction accuracy
of the model-based FDIs, where it can be seen that the model-
free FDI mechanism can perform at par with the model-based
FDI mechanism. Based on this observation, we can infer that
a model-free FDI mechanism can be used with very high
confidence. We use N×128 as the size of the input layer
with N being the size of the features, hidden layer(s) of size
128×128 followed by a hidden layer of size 128×64 and an
output layer of size 64×m. Note that N = (2p + m) × Tf
for the FDI with all the data, p × Tf for the FDI with



Fig. 4: Comparison of model-based and model-free FDI
mechanisms with perturbation in system parameters.

just the residual data, and N = (p + m) × Tf for the
model-free FDI mechanism. Next, we also study the effect
of change in model parameters (such as the inertia matrix,
etc.) on the prediction accuracy of the FDI mechanisms. For
this experiment, we changed the system parameters by more
than 40%. As can be seen from Figure 4, the prediction
accuracy of the model-free FDI mechanism changes only
slightly due to changes in the model parameters, while that
of the model-based FDI mechanism drops significantly. Thus,
in the scenarios when a correct system model is not known
or the system dynamics undergo changes during operation, a
model-based FDI mechanism might not remain reliable.

Finally, the closed-loop performance with all the compo-
nents integrated is illustrated in Figure 5. Here, the fault occurs
in motor #2 at t = 1.0 sec, and the designed architecture can
keep the system from crashing on the ground. The plot shows
that the quadrotor maintains a safe altitude by switching to
the post-fault CBF hpost. This illustrates that the proposed
framework is capable of accurately identifying a fault and
safely recovering the system from it.

VI. CONCLUSION

In this paper, we propose a learning method for effectively
learning a model-free FDI and a switching mechanism for
automatically detecting and recovering from a fault. The
numerical experiments demonstrated that the applicability of
a model-based FDI mechanism is very limited, while that of
the proposed model-free is quite broad and general.

As part of future work, we will explore methods that
can incorporate more general fault models where the faulty
actuator can take any arbitrary signal, and more than one
actuator can undergo failure simultaneously.
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