
Neural Network-based Fault Detection and Identification for Quadrotors using
Dynamic Symmetry

Kunal Garg Chuchu Fan

Abstract— Autonomous robotic systems, such as quadrotors,
are susceptible to actuator faults, and for the safe operation
of such systems, timely detection and isolation of these faults
is essential. Neural networks can be used for verification of
actuator performance via online actuator fault detection with
high accuracy. In this paper, we develop a novel model-free
fault detection and isolation (FDI) framework for quadrotor
systems using long-short-term memory (LSTM) neural network
architecture. The proposed framework only uses system output
data and the commanded control input and requires no knowl-
edge of the system model. Utilizing the symmetry in quadrotor
dynamics, we train the FDI for fault in just one of the motors
(e.g., motor #2), and the trained FDI can predict faults in any of
the motors. This reduction in search space enables us to design
an FDI for partial fault as well as complete fault scenarios.
Numerical experiments illustrate that the proposed NN-FDI
correctly verifies the actuator performance and identifies partial
as well as complete faults with over 90% prediction accuracy.
We also illustrate that model-free NN-FDI performs at par with
model-based FDI, and is robust to model uncertainties as well
as distribution shifts in input data.

I. INTRODUCTION

Safety-critical systems are those where violation of safety
constraints could result in loss of lives, significant prop-
erty damage, or damage to the environment. In real-life
applications, many cyber-physical control systems are safety-
critical, including autonomous cars, unmanned aerial vehi-
cles (UAVs), and aircraft, where safety pertains to keeping
the autonomous agent in a predefined safe set away from
obstacles and other agents in its environment. In this context,
safe control requires finding a control policy that keeps the
system within the safe region at all times. As autonomous
systems become more complex (thus increasing the like-
lihood of faults [1]), it becomes necessary to explicitly
consider the possibility of faults in their actuators which
can make it difficult (or even impossible in certain cases)
to keep the system safe. Many real-world flight incidents
have been attributed to actuator failures such as runaway,
sticking, and floating [2]. Such failures have been studied
in the field of fault-tolerant control (FTC), which has been
applied extensively to applications such as aircraft [3]–[6],
and spacecraft attitude controls [7], [8].

There is a long history of work in control theory dealing
with adaptation to system faults and verification of safe
controllers. Due to space limits, we only discuss common
FTC techniques for actuator faults. Classical methods in-
clude robust control [9]; more recent works include robust
MPC [10] and quantitative resilience [11]. In this paper, we

KG and CF are with the Department of Aeronautics and Astronautics at
MIT, {kgarg, chuchu}@mit.edu.

focus on safe fault-tolerant control, where the salient issue
is in ensuring that the system will avoid entering an unsafe
set despite actuator faults such as loss of control authority or
unknown input disturbances. FTC methods are, in general,
classified into two categories: active and passive. Active FTC
uses detection techniques and a supervisory system to detect
the fault and modify the control structure accordingly. Pas-
sive FTC relies on a robust compensator to reduce the effects
of faults. For a more in-depth explanation of the passive and
active FTC theory, see [2]. Many FTC approaches have been
presented in the literature to accommodate actuator faults.
Fuzzy logic control [12] and data-driven approaches such as
[1] are used for compensating unknown nonlinear dynamics
and actuator faults in multi-agent systems. Feedback lin-
earizing control [5], [13], model predictive control [3], [10],
sliding mode control [4], and adaptive sliding mode control
[6] have been implemented on various nonlinear systems
under faults such as a quadrotor subject to one or more motor
failures. Adaptive control [7] and robust adaptive control [8]
were studied for linear systems under actuator fault, model
uncertainty, and external disturbance. Adaptive fuzzy FTC is
presented in [14] for actuator faults in Markov jump systems.
However, FTC-based approaches can be conservative without
accurate identification of the source of the fault. Thus, it
is essential to design a highly reliable fault detection and
identification (FDI) framework that can predict a fault with
high accuracy.

There is a plethora of work on FDI; we refer interested
readers to the survey articles [15]–[17] that discuss various
approaches of FDI used in the literature. In particular, the
residual-based method has been used very commonly in
prior work, where the expected state or output (under the
commanded input and a known system model) and the actual
state or output of the system are compared for fault detection.
The authors in [18] study FDI for a linear parameter-
varying (LPV) system and use an observer-based FDI that
uses the residual data. Such residual information requires
the knowledge of the system model, and thus, is model-
dependent. Another example of a model-based approach is
[19] where model-based output-residual are used instead of
state-residuals. The work in [20] is capable of handling
partial faults but not complete faults in an actuator. Most of
the work on adaptation-based FDI uses a linearized model
for the system [21], [22].

Neural network (NN)-based verification and system moni-
toring have been successfully used for FDI. The architecture
of the considered NN is very important for such verification
problems. Fault detection using system trajectory data can

20
23

 5
9t

h
A

nn
ua

l A
lle

rto
n

C
on

fe
re

nc
e

on
 C

om
m

un
ic

at
io

n,
 C

on
tro

l,
an

d
C

om
pu

tin
g

(A
lle

rto
n)

 |
97

9-
8-

35
03

-2
81

4-
1/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

A
lle

rto
n5

81
77

.2
02

3.
10

31
34

41

Authorized licensed use limited to: MIT Libraries. Downloaded on November 21,2023 at 15:05:02 UTC from IEEE Xplore. Restrictions apply.

be interpreted as anomaly detection in time-series data, and
hence, long-short-term memory (LSTM)-based NNs become
a natural choice for FDI as they can effectively handle
time-series data [23]–[25]. There is some work on using
LSTM-based FDI, e.g., [26], [27], but it is limited to a
very narrow class of faults. As noted in [28], prior work
on neural network-based model-free FDI relies on recon-
struction of the model using artificial neural networks (e.g.,
[29]), or generating the residual information using Kalman
filtering (see e.g., [30]). The method in [28] also estimates
a reduced-order model of the system as an intermediate
step. The main disadvantage of model-based FDI methods
is that their performance can degrade significantly due to
model uncertainties or imperfections in the used model for
designing the FDI mechanism and the actual system model.

To overcome this limitation, in this paper, we design a
model-free FDI mechanism that only uses the output of the
system and the commanded input to the system, and does
not use the residual information. The paper’s contributions
are summarized below:

• We present a truly model-free approach, where we do
not require to either learn the system model or create
a reduced-order representation of the model. Instead,
we use the system output and the commanded input as
the features of a neural network, which directly predicts
whether there is an actuator fault.

• We consider a variety of partial fault scenarios and
leverage the symmetry in quadrotor dynamics to reduce
the search space for training and design an NN-FDI
trained on the failure of just one motor that is capable
of predicting fault in any of the quadrotor motors.

• We illustrate through numerical experiments that the
model-free FDI mechanism performs at par (and even
better in some cases than) the model-based mechanisms.

• We also illustrate the robustness of the proposed method
against modeling uncertainties and demonstrate through
numerical examples that while the performance of the
model-based FDI mechanism drops significantly under
model uncertainties, the performance of the designed
model-free approach remains the same.

II. PROBLEM FORMULATION

We start by presenting the quadrotor dynamics. The
quadrotor dynamics can be written compactly as:

ẋ = f(x) + g(x)u, (1a)
y = ρ(x), (1b)

for state x ∈ X , control input u ∈ U , and state and control
sets X ⊂ Rn and U ⊂ Rm, respectively. Here, ρ : R12 → R6

is the output map consisting of the position and the attitude
vector of the quadrotor, i.e., y = (px, py, pz, ϕ, θ, ψ). Such an
output model is realized using a 6DOF Inertial Measurement
Unit (IMU) output. The 6-DOF quadrotor dynamics are given
in [31] with x ∈ R12 consisting of positions, velocities, an-
gular positions and angular velocities, and u ∈ R4 consisting

of the thrust at each of four motors :

ṗx =
(
c(ϕ)c(ψ)s(θ) + s(ϕ)s(ψ)

)
w

−
(
s(ψ)c(ϕ)− c(ψ)s(ϕ)s(θ)

)
v + uc(ψ)c(θ) (2a)

ṗy =
(
s(ϕ)s(ψ)s(θ) + c(ϕ)c(ψ)

)
v

−
(
c(ψ)s(ϕ)− s(ψ)c(ϕ)s(θ)

)
w + us(ψ)c(θ) (2b)

ṗz = w c(ψ)c(ϕ)− u s(θ) + v s(ϕ)c(θ) (2c)
u̇ = r v − q w + g s(θ) (2d)
v̇ = p w − r u− g s(ϕ)c(θ) (2e)

ẇ = q u− p v +
U1

m
− g c(θ)c(ϕ) (2f)

ϕ̇ = r
c(ϕ)

c(θ)
+ q

s(ϕ)

c(θ)
(2g)

θ̇ = q c(ϕ)− r s(ϕ) (2h)

ψ̇ = p+ r c(ϕ)t(θ) + q s(ϕ)t(θ) (2i)

ṙ =
1

Izz

(
U2 − pq(Iyy − Ixx)

)
(2j)

q̇ =
1

Iyy

(
U3 − pr(Ixx − Izz)

)
(2k)

ṗ =
1

Ixx

(
U4 + qr(Izz − Iyy)

)
(2l)

where m, Ixx, Iyy, Izz, kr, kt > 0 are system parameters,
g = 9.8 is the gravitational acceleration, c(·), s(·), t(·)
denote cos(·), sin(·), tan(·), respectively, (px, py, pz) denote
the position of the quadrotor, (ϕ, θ, ψ) its Euler angles and
u = (U1, U2, U3, U4) the input vector consisting of thrust U1

and moments U2, U3, U4.
The relation between the vector u and the individual motor

speeds is given asU1

U2

U3

U4

=

CT CT CT CT

−dCT

√
2 −dCT

√
2 dCT

√
2 dCT

√
2

−dCT

√
2 dCT

√
2 dCT

√
2 −dCT

√
2

−CD CD −CD CD

ω2
1

ω2
2

ω2
3

ω2
4

,
(3)

where ωi is the angular speed of the i−th motor for i ∈
{1, 2, 3, 4}, CD is the drag coefficient and CT is the thrust
coefficient. These parameters are given as: Ixx = Iyy =
1.395 × 10−5 kg-m2, Izz = 2, 173 × 10−5 kg-m2, m =
0.0299 kg, CT = 3.1582× 10−10 N/rpm2, CD = 7.9379×
10−12 N/rpm2 and d = 0.03973 m (see [31]).

In this paper, we consider an actuator fault occurring at
some unknown time tf ≥ 0:

u(t, x) =

{
π(t, x) if t ≤ tF ;

diag(Θ) π(t, x) if t > tF ,
, (4)

where Θ = [0, 1]m ∈ Rm is the vector denoting whether
an actuator is faulty or not, and diag : Rm → Rm×m

maps a vector in Rm to a diagonal matrix in Rm×m. If
the i−th actuator is faulty, then Θi ∈ [0, 1) and the rest of
the elements of Θ are 1. The problem statement is to design
an NN-based FDI ΘNN that correctly predicts and identifies
which actuator has a fault and what is the degree of the fault.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 21,2023 at 15:05:02 UTC from IEEE Xplore. Restrictions apply.

III. NEURAL FAULT-DETECTION AND ISOLATION

A. Model-free FDI

The faults must be detected correctly and promptly for
the safe recovery of the system. We use a learning-based
approach to design a fault-detection mechanism. Let Θ ∈
[0, 1]m denote the fault vector, where Θi < 1 indicates that
i−th actuator is faulty, while Θi = 1 denotes it is not faulty.
Let ΘNN : Y × U → Rm be the predicted fault vector,
parameterized as a neural network. Here, Y = {x(·) | y(·) =
ρ(x(·))} is a function space consisting of trajectories of the
state vector, and U = {u(·) | u(·) ∈ U} is a function space
consisting of input signals. To generate the residual data, the
knowledge of the system model is essential, which makes
the residual-based approach model dependent. This is the
biggest limitation of this approach, as modeling errors can
lead to severe performance issues in fault detection due to
model uncertainties. To overcome this, we propose a model-
free NN-based FDI mechanism that only uses (y, u) as the
feature data, i.e., it does not require the model-based residual
information. For a given time length T > 0, at any given time
instant t ≥ T , the NN function ΘNN takes a finite trace
of the system trajectory x(t − τ)|Tτ=0 and the commanded
input signal u(t− τ)Tτ=0 as input, and outputs the vector of
predicted faults.

Using the symmetry of the quadrotor (i.e., Ixx = Iyy), it is
possible to only learn the fault-detector for one of the faulty
actuators and detect which motor is faulty using rotational
invariance. Let us define color-coding for the four motors in
the original configuration (i.e., case 1):

#1 → Black #2 → Green #3 → Red #4 → Blue

During the training, without loss of generality, we assume
that the green motor is faulty. Now, if instead, another motor
is faulty, then a state-transformation map can be defined as

Φ(n) =

Rθ 0 0 0
0 Rθ 0 0
0 0 Rθ 0
0 0 0 Rθ

, with θ = π
2 , π,

3π
2 for n = 3,

4 and 1, respectively, where Rθ =

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

.

Thus, for case #4, the black motor acts as motor #2 in the
original configuration (see Figure 1). As a result, if the black
motor is faulty, and the fault-predictor is trained to detect
that motor #2 is faulty (i.e., green motor in the original

Fig. 1: The four cases used in fault-prediction. Each next
case is generated through a 90 degrees anti-clockwise axes
rotation from the previous model (resulting in a 90-degree
clockwise configurational rotation).

Fig. 2: General neural-network architecture for failure predic-
tion. The training data includes all possible trajectories with
different lengths of faulty input (the violet color represents
the portion of the trajectory with faulty input).

configuration), then case 4 will give the correct prediction
(see Figure 3).

B. Model-based FDI

For model-based FDI mechanisms, the residual data is also
required as an additional feature to the NN. The error vector
ỹ (commonly known as residual in the FDI literature) is
defined as the stepwise error between the actual state of
the system with potentially faulty actuators and the state
of the system assuming no faults, i.e., ỹ(t) = y(t) − ȳ(t)
where y is the output of the actual system (1) with faulty
input and ȳ is the output of reference model without fault
˙̄x = f(x̄) + g(x̄)u, ȳ(t) = ρ(x̄(t)), with ȳ(kτ) = y(kτ)),
k = 0, 1, 2, . . . , where τ > 0 is sampling period for data
collection. In most of the prior literature, either x̃ (in state-
based methods) or ỹ (in output-based methods) is used for
designing FDI. However, that requires the availability of
the model for computing the residuals, which makes such
approaches very restrictive.

C. Training data

For training, the trajectory data is collected where actuator
#2 is partially faulty with θ2 ∈ {0, 0.1, 0.2, · · · , 0.9, 1}. Let
d = 11 denote the number of faulty scenarios for motor #2.
At each time instant t ≥ T , it is possible that only a portion
of the trajectory is generated under a faulty actuator. That
is, the possible input to the system is u(t − τ, Tf)

T
τ=0 :=

[u(t − T), u(t − T + 1), · · · , uf (t − T + Tf), uf (t − T +
Tf + 1), · · · , u(t)] (with the corresponding system output
y(t−τ, Tf)Tτ=0 and the residual ỹ(t−τ, Tf)Tτ=0), where Tf ∈
[0, T] dictates the time instant when the fault occurs. Thus,
the NN for fault prediction must be trained on all possible
combinations of occurrences of fault. Hence, our training

data includes
T⋃

Tf∈0

(
y(t − τ, Tf)

T
τ=0, ỹ(t − τ, Tf)

T
τ=0, u(t −

τ, Tf)
T
τ=0

)
(see Figure 2). In every training iteration, we

generate Ntraj = N1 × d× Tf trajectories, so that we have
N1 > 0 trajectories for faults in each of the d faults in
motor #2 with all possible lengths of trajectories under
one faulty actuator in [0, Tf]. In particular, we consider
discrete fault values Θ2 ∈ {0, 0.1, 0.2, · · · , 0.9} and thus,
d = 11 with 10 values for faults and 1 for non-faulty cases.
The training data is generated by randomly choosing initial
conditions {x(0)}N1

1 and rolling out d trajectories for each

Authorized licensed use limited to: MIT Libraries. Downloaded on November 21,2023 at 15:05:02 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Learning framework for FDI
Data: iterM , N,Nbs, Nbuf , NM , Nm

Result: ΘNN

Initialize ΘNN as NNs; /* LSTM-NN */
{y, u, ỹ}buf = ∅
while iter ≤ iterM or (loss < 10−3 and iter ≥ Nm

do
Sample {x0}N1

1

for i ∈ N1 do
Roll out d trajectories under Θ2 ∈ [0, 1]
{y, u, ỹ}buf = {y, u, ỹ}buf ∪ {y, u, ỹ}N1

1
end
{z} = {y, u, ỹ}buf
{z}train = {z}[−Nbuf :]
while {z}train ̸= ∅ do

{z}train,bs = Sample Nbs trajectories from
{z}train

loss = LMF
Θ /* LMB

Θ for model-based

*/
train ΘNN

{z}train = {z}train \ {z}train,bs
end

end

of the sampled conditions under d possible Θ2 values. This
enables the NN to distinguish between various kinds of fault
scenarios since it obtains trajectories under all considered
fault scenarios with the same initialization.

The loss function for model-free FDI training is defined
as

LMF
Θ =

1

Ntraj

Ntaj∑
j=1

[
||Θj,NN

(
yj(·), uj(·)

)
−Θj∥ − ϵ

]
+
,

(5)

while model-based FDI is given as:

LMB
Θ =

1

Ntraj

Ntaj∑
j=1

[
||Θj,NN

(
yj(·), uj(·), ỹj(·)

)
−Θj∥ − ϵ

]
+
,

(6)

where Θj ∈ {1} × [0, 1] × {1} × {1} is the fault vector
used for generating the data for the j−th trajectory and
0 < ϵ ≪ 1. In each training epoch, we generate N =
200 × 11 × 100 trajectories of length Tf and maintain a
buffer of 1.5 M trajectories. We train the NN until the loss
reduces to 10−3. We use a Linear-Quadratic Regulator (LQR)
input to generate the training data. In our experiments, we
illustrate that the trained NN is highly robust to the kind
of input used for trajectory generation and can predict fault
with the same accuracy for the trajectories generated by
Control Barrier Functions (CBF)-based quadratic programs
(QPs) which are commonly used for maintaining safety
[32]. During training, we optimize the loss function using
stochastic gradient descent, and we train the pre- and post-
fault networks separately. The number of trajectories in

the buffer is capped at Nbuf so that once the maximum
number of trajectories are collected, the earlier trajectories
are dropped from the buffer. The training is performed either
till the number of iterations reaches NM > 0, or the loss
drops below 10−3 after at least Nm < NM training epochs.
During each training epoch, we use a batch size of 50000
trajectories and perform 500 iterations of training on all
the buffer data. The learning algorithm is summarized in
Algorithm 1

IV. NUMERICAL EVALUATIONS

The primary objective of our numerical experiments is
to evaluate the effectiveness of our method in terms of
fault detection. We consider an experimental case study
involving the Crazyflie quadrotor with a fault in motor #2.
First, we evaluate the correctness of the fault prediction by
the 4 cases explained in Figure 1. A fault is predicted if
min
i

min
n

Θi,NN (Φn(x)) < Θtol, where Θtol = 0.2. In this
case, we only consider the case when Θi = 0. The predicted
faulty actuator is given by the argmin of ΘNN (Φn∗(x)),
where n∗ is the rotation index for which Θi,NN is be-
low the tolerance. The experiments are run to check the
prediction accuracy of the NN-based FDI mechanism for
various lengths of data with failed actuators between 0 and
Tf = 100. We compute the prediction accuracy when there
is a fault as well as when there is no fault. We sample
10000 initial conditions randomly from the safe set Xsafe

to generate trajectories for test data, where 2000 trajectories
are generated for each of the faults and 2000 trajectories are
generated without any fault. Each trajectory is generated for
200 epochs with fault occurring at t = 100. We feed the
moving trajectory data (x(k − 100, k), u(k − 100, k), x̃(k −
100, k) to the trained NN-based FDI starting from k = 100.
For a given k ∈ [100, 200], the portion of trajectory data
with faulty actuator is k − 100. Figure 3 illustrates that the

Fig. 3: Failure prediction accuracy for faults in different
motors: Top-left: Failure in motor #1, Top-right: Failure in
motor #2, Bottom-right: Failure in motor #3 and Bottom-
left: Failure in motor #4. This illustrates that with one trained
FDI, it is possible to predict failure in any of the actuators
with high prediction accuracy.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 21,2023 at 15:05:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Comparison of prediction accuracy of two NN archi-
tectures: a multi-layer perceptron (MLP) with linear layers
and a long-short-term memory (LSTM) NN for various fault
parameters Θ ∈ [0, 1].

prediction accuracy for correct fault prediction for each of
the cases is above 80%. This illustrates that it is possible to
effectively predict faults in all motors with an FDI trained
with faults in just one of the motors.

Next, we evaluate prediction accuracy for different fault
values Θ2 ∈ [0, 1]. For this experiment, we compare the
performance of two different types of NN architectures for
model-free FDIs, namely, a multi-layer perceptron (MLP)
with 1 input layer, 4 hidden layers, and 1 output layer and a
long-short-term memory (LSTM) where the LSTM layer is
followed by 2 linear layers. In each of the NN architectures,
we use N×128 as the size of the input layer with N being the
size of the features, hidden layer(s) of size 128×128 followed
by a hidden layer of size 128×64 and an output layer of size
64×m. Note that N = (2p+m)× Tf for the FDI with all
the data, p× Tf for the FDI with just the residual data, and
N = (p+m)×Tf for the model-free FDI mechanism. Figure
4 plots the prediction accuracy for various values of Θ2 for
the two considered NN architectures. It can also be observed
that LSTM-based NN FDI can accurately identify each of
the faults while MLP-based FDI has a very low prediction
accuracy.

We use an LQR input to generate the training data since
solving a CBF-based QP is relatively slower for collecting
a sufficient amount of training data. In our experiments,
we illustrate that the trained NN is highly robust to the
kind of input used for trajectory generation and can predict
fault with the same accuracy for the trajectories generated
by CBF-based QPs. For this experiment, we compare the
prediction accuracy of the model-free NN-FDI (θNN (y, u))
and the model-based FDIs (θNN (y, u, ỹ)). Figure 5 shows
the prediction accuracy of the model-based FDIs. It can also

Fig. 5: Failure prediction accuracy for CBF-QP input (solid
lines) and LQR input (dashed lines). The performance of
model-free (Ours) FDI with data (y, u) is shown in blue,
while the one with all the data (y, u, ỹ) is in red.

be seen that the model-free FDI mechanism can perform at
par (even better) than the model-based FDI mechanism with
features ((y, u, ỹ)). Based on this observation, we can infer
that a model-free FDI mechanism can be used with very high
confidence. In this case, it is crucial to note that the trained
fault predictor is highly robust with respect to the input data.
In particular, to accelerate the learning process, a very simple
LQR controller is used, where the nonlinear system dynamics
are linearized about the origin, and a constant LQR gain is
used. However, as can be seen from Figure 5, the prediction
generalizes to the CBF-based QP controller just as well and
has a similar high prediction accuracy.

Finally, we study the effect of change in model parameters
(such as the inertia matrix, etc.) on the prediction accuracy
of the FDI mechanisms. For this experiment, we changed the
system parameters by more than 40% (see Table I). As can
be seen from Figure 6, the prediction accuracy of the model-
free FDI mechanism is unaffected by a change in the model
parameters, while that of the model-based FDI mechanism
drops significantly. Thus, in the scenarios when a correct
system model is not known or the system dynamics undergo
changes during operation, a model-based FDI mechanism
might not remain reliable. Figures 5 and 6 illustrate that the
proposed model-free NN-FDI is agnostic to the type of input
used for data generation as well as to perturbations in model
parameters.

TABLE I: Nominal and perturbed quadrotor parameters.
Parameter Nominal value Perturbed value

m 0.02 0.015
Ixx 1.395 ×10−5 2.0 ×10−5

Iyy 1.395 ×10−5 1.0 ×10−5

Izz 2.173 ×10−5 3.0 ×10−5

CT 3.158 ×10−10 2.5 ×10−10

CD 7.9379 ×10−12 9.0 ×10−12

d 0.03973 0.05

Authorized licensed use limited to: MIT Libraries. Downloaded on November 21,2023 at 15:05:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Comparison of prediction accuracy of model-based
and model-free FDI mechanisms with perturbation in system
parameters.

V. CONCLUSION

In this paper, we propose a learning method for effectively
learning a model-free output-based FDI for the prediction
of a variety of partial losses in actuation for quadrotors.
The proposed NN-based FDI can verify the actuator per-
formance with very high accuracy and correctly predicts a
variety of faults. The numerical experiments demonstrated
that the applicability of a model-based FDI mechanism is
very limited, while that of the proposed model-free is quite
broad and general. Additionally, the robustness to out-of-
distribution input data illustrates that the proposed model-
free mechanism can be easily trained on simple input data
(e.g., LQR input), does not require the model information
and generalizes to both out-of-distribution input data as well
as changes in model parameters (or modeling uncertainties).

As part of future work, we will explore methods that
can incorporate more general fault models where the faulty
actuator can take any arbitrary signal, and more than one
actuator can undergo failure simultaneously. We will also
explore applications of this framework to resilient control of
networked and distributed control systems, which introduce
additional notions of system failure, including loss of entire
nodes or communication links in addition to input distur-
bances and loss of control authority.

REFERENCES

[1] G. Lin, H. Li, H. Ma, D. Yao, and R. Lu, “Human-in-the-loop
consensus control for nonlinear multi-agent systems with actuator
faults,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 1, pp.
111–122, 2020.

[2] A. Abbaspour, S. Mokhtari, A. Sargolzaei, and K. K. Yen, “A survey
on active fault-tolerant control systems,” Electronics, vol. 9, no. 9, p.
1513, 2020.

[3] A. Eltrabyly, D. Ichalal, and S. Mammar, “Fault-tolerant model
predictive control trajectory tracking for a quadcopter with 4 faulty
actuators,” IFAC-PapersOnLine, vol. 54, no. 4, pp. 141–146, 2021.

[4] F. Sharifi, M. Mirzaei, B. W. Gordon, and Y. Zhang, “Fault tolerant
control of a quadrotor uav using sliding mode control,” in 2010
conference on control and Fault-Tolerant Systems (SysTol). IEEE,
2010, pp. 239–244.

[5] A. Freddi, A. Lanzon, and S. Longhi, “A feedback linearization
approach to fault tolerance in quadrotor vehicles,” IFAC proceedings
volumes, vol. 44, no. 1, pp. 5413–5418, 2011.

[6] B. Wang, Y. Shen, and Y. Zhang, “Active fault-tolerant control for a
quadrotor helicopter against actuator faults and model uncertainties,”
Aerospace Science and Technology, vol. 99, p. 105745, 2020.

[7] X. Zhu, J. Chen, and Z. H. Zhu, “Adaptive learning observer for
spacecraft attitude control with actuator fault,” Aerospace Science and
Technology, vol. 108, p. 106389, 2021.

[8] S. M. Smaeilzadeh and M. Golestani, “A finite-time adaptive robust
control for a spacecraft attitude control considering actuator fault and
saturation with reduced steady-state error,” Transactions of the Institute
of Measurement and Control, vol. 41, no. 4, pp. 1002–1009, 2019.

[9] J.-J. E. Slotine and W. Li, Applied nonlinear control: an introduction.
Prentice-Hall, 1991.

[10] A. Bemporad and M. Morari, “Robust model predictive control: A
survey,” in Robustness in identification and control, A. Garulli and
A. Tesi, Eds. Springer London, 1999, pp. 207–226.

[11] J.-B. Bouvier and M. Ornik, “Quantitative resilience of linear sys-
tems,” in 20th European Control Conference, 2022, pp. 477–482.

[12] M. J. Er, C. Deng, and N. Wang, “A novel fuzzy logic control
method for multi-agent systems with actuator faults,” in 2018 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE,
2018, pp. 1–7.

[13] A. Lanzon, A. Freddi, and S. Longhi, “Flight control of a quadrotor
vehicle subsequent to a rotor failure,” Journal of Guidance, Control,
and Dynamics, vol. 37, no. 2, pp. 580–591, 2014.

[14] H. Yang, Y. Jiang, and S. Yin, “Adaptive fuzzy fault-tolerant control
for markov jump systems with additive and multiplicative actuator
faults,” IEEE Transactions on Fuzzy Systems, vol. 29, no. 4, pp. 772–
785, 2020.

[15] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection,
isolation, and reconfiguration methods,” IEEE transactions on control
systems technology, vol. 18, no. 3, pp. 636–653, 2009.

[16] R. Puchalski and W. Giernacki, “Uav fault detection methods, state-
of-the-art,” Drones, vol. 6, no. 11, p. 330, 2022.

[17] G. K. Fourlas and G. C. Karras, “A survey on fault diagnosis methods
for uavs,” in 2021 International Conference on Unmanned Aircraft
Systems (ICUAS). IEEE, 2021, pp. 394–403.

[18] J. A. Guzmán-Rabasa, F. R. Lopez-Estrada, B. M. González-Contreras,
G. Valencia-Palomo, M. Chadli, and M. Perez-Patricio, “Actuator
fault detection and isolation on a quadrotor unmanned aerial vehicle
modeled as a linear parameter-varying system,” Measurement and
Control, vol. 52, no. 9-10, pp. 1228–1239, 2019.

[19] A. Y. Ouadine, M. Mjahed, H. Ayad, and A. El Kari, “Uav quadro-
tor fault detection and isolation using artificial neural network and
hammerstein-wiener model,” Studies in Informatics and Control,
vol. 29, no. 3, pp. 317–328, 2020.

[20] R. C. Avram, X. Zhang, and J. Muse, “Quadrotor actuator fault
diagnosis and accommodation using nonlinear adaptive estimators,”
IEEE Transactions on Control Systems Technology, vol. 25, no. 6, pp.
2219–2226, 2017.

[21] Y. Zhong, Y. Zhang, W. Zhang, J. Zuo, and H. Zhan, “Robust
actuator fault detection and diagnosis for a quadrotor uav with external
disturbances,” IEEE Access, vol. 6, pp. 48 169–48 180, 2018.

[22] Z. Cen, H. Noura, T. B. Susilo, and Y. A. Younes, “Robust fault
diagnosis for quadrotor uavs using adaptive thau observer,” Journal of
Intelligent & Robotic Systems, vol. 73, pp. 573–588, 2014.

[23] Z. Ghrib, R. Jaziri, and R. Romdhane, “Hybrid approach for anomaly
detection in time series data,” in 2020 international joint conference
on neural networks (ijcnn). IEEE, 2020, pp. 1–7.

[24] O. I. Provotar, Y. M. Linder, and M. M. Veres, “Unsupervised anomaly
detection in time series using lstm-based autoencoders,” in 2019 IEEE
International Conference on Advanced Trends in Information Theory
(ATIT). IEEE, 2019, pp. 513–517.

[25] T. Ergen and S. S. Kozat, “Unsupervised anomaly detection with lstm
neural networks,” IEEE transactions on neural networks and learning
systems, vol. 31, no. 8, pp. 3127–3141, 2019.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 21,2023 at 15:05:02 UTC from IEEE Xplore. Restrictions apply.

[26] J.-H. Park and D. E. Chang, “Data-driven fault detection and isolation
of system with only state measurements and control inputs using
neural networks,” in 2021 21st International Conference on Control,
Automation and Systems (ICCAS). IEEE, 2021, pp. 108–112.

[27] A. Bondyra, M. Kołodziejczak, R. Kulikowski, and W. Giernacki,
“An acoustic fault detection and isolation system for multirotor uav,”
Energies, vol. 15, no. 11, p. 3955, 2022.

[28] C. Alippi, S. Ntalampiras, and M. Roveri, “Model-free fault detection
and isolation in large-scale cyber-physical systems,” IEEE Transac-
tions on Emerging Topics in Computational Intelligence, vol. 1, no. 1,
pp. 61–71, 2016.

[29] M. Bakhtiaridoust, M. Yadegar, N. Meskin, and M. Noorizadeh,
“Model-free geometric fault detection and isolation for nonlinear
systems using koopman operator,” IEEE Access, vol. 10, pp. 14 835–
14 845, 2022.

[30] M. Thirumarimurugan, N. Bagyalakshmi, and P. Paarkavi, “Compari-
son of fault detection and isolation methods: A review,” in 2016 10th
International Conference on Intelligent Systems and Control (ISCO).
IEEE, 2016, pp. 1–6.

[31] C. Budaciu, N. Botezatu, M. Kloetzer, and A. Burlacu, “On the
evaluation of the crazyflie modular quadcopter system,” in 2019 24th
IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA). IEEE, 2019, pp. 1189–1195.

[32] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in 53th IEEE Conference on Decision and Control, 2014, pp. 6271 –
6278.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 21,2023 at 15:05:02 UTC from IEEE Xplore. Restrictions apply.

